Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
基本信息
- 批准号:561065-2020
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphene is an exotic photoelectronic material of choice of this decade. It exhibits unique broadband optical absorption characteristics and metal like transport properties. Graphene's Fermi level coincides with the electron and hole states giving it high charge carriers mobility in excess of 15000 cm2V-1s-1 and electric current density sustenance million times higher than copper. This unique advantage makes the realization of broadband photodetectors possible that far exceeds the capabilities of conventional photodetectors both in bandwidth and responsiveness despite its one-atom layer thickness and has attracted significant interest in photonics applications. Graphene research as such has emerged as a translational nanotechnology bridging academic research to state-of-the-art applications and continues to do so by exploiting these unique properties. Few-layer-graphene (FLG) has also received much attention recently because of its promising bandgap tunability and acute temperature sensitivity. Our proposed research is to take up the challenge of identifying prospective FLG and FLG-composites that exhibit high photo-responsive gain with tunable bandwidth properties that can have a transformative impact in the photonics and imaging sensors industry. The project will delve into developing novel resonance-based FLG-photodetectors and sensors that would also tap on to the global photonics market that is expected to reach $970.5 billions by 2027. We will demonstrate proof-of-concept of developing novel high-gain photoelectronic devices with transparent and flexible form factors. Graphene's unique optical and electrical properties have the potential to make a profound impact in Information and Communications Technology in the short and long term. FLG-components integrated with silicon-based electronics will usher substantial performance improvements supporting huge data loads and enabling completely new applications. In the long run seamlessly integrating photonic devices, sensors, and gadgets into Smart Internet of Things is envisioned.
石墨烯是近十年来选择的一种奇异的光电材料。它表现出独特的宽带光学吸收特性和类金属传输特性。石墨烯的费米能级与电子和空穴态一致,使其具有超过 15000 cm2V-1s-1 的高载流子迁移率,并且电流密度比铜高一百万倍。这一独特的优势使得宽带光电探测器的实现成为可能,尽管其厚度为单原子层,但其在带宽和响应能力方面都远远超过了传统光电探测器的能力,并引起了光子学应用的极大兴趣。石墨烯研究本身已成为一种将学术研究与最先进的应用联系起来的转化纳米技术,并通过利用这些独特的特性继续这样做。少层石墨烯(FLG)由于其有前途的带隙可调性和敏锐的温度敏感性,最近也受到了广泛的关注。我们提出的研究旨在迎接挑战,识别具有高光响应增益和可调带宽特性的前瞻性 FLG 和 FLG 复合材料,这些特性可以对光子学和成像传感器行业产生变革性影响。该项目将深入开发新型基于谐振的 FLG 光电探测器和传感器,这些探测器和传感器也将开拓全球光子学市场,预计到 2027 年将达到 9705 亿美元。我们将展示开发新型高增益光电器件的概念验证具有透明且灵活外形的设备。石墨烯独特的光学和电学特性有可能在短期和长期对信息和通信技术产生深远的影响。与硅基电子器件集成的 FLG 组件将带来显着的性能改进,支持巨大的数据负载并实现全新的应用。从长远来看,我们预计将光子设备、传感器和小工具无缝集成到智能物联网中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kim, Seonghwan其他文献
Standoff and Point Detection of Thin Polymer Layers Using Microcantilever Photothermal Spectroscopy
使用微悬臂梁光热光谱法对薄聚合物层进行间距和点检测
- DOI:
10.1149/1945-7111/ac5657 - 发表时间:
2022-03 - 期刊:
- 影响因子:3.9
- 作者:
Zhao, Yaoli;Chakraborty, Patatri;Stavinski, Nicholas;Velarde, Luis;Maheshkar, Vaishali;Dantu, Karthik;Phani, Arindam;Kim, Seonghwan;Thundat, Thomas - 通讯作者:
Thundat, Thomas
Open Macromolecular Genome: Generative Design of Synthetically Accessible Polymers
开放大分子基因组:可合成聚合物的生成设计
- DOI:
10.1021/acspolymersau.3c00003 - 发表时间:
2023-08-09 - 期刊:
- 影响因子:0
- 作者:
Kim, Seonghwan;Schroeder, Charles M;Jackson, Nicholas E - 通讯作者:
Jackson, Nicholas E
Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser
基于量子级联激光器的无受体纳米机械红外光谱的分子识别
- DOI:
10.1038/srep01111 - 发表时间:
2013 - 期刊:
- 影响因子:4.6
- 作者:
Kim, Seonghwan;Lee, Dongkyu;Liu, Xunchen;Van Neste, Charles;Jeon, Sangmin;Thundat, Thomas - 通讯作者:
Thundat, Thomas
Interferon-γ elicits the ocular surface pathology mimicking dry eye through direct modulation of resident corneal cells.
- DOI:
10.1038/s41420-023-01511-0 - 发表时间:
2023-06-30 - 期刊:
- 影响因子:7
- 作者:
Ko, Jung Hwa;Kim, Seonghwan;Ryu, Jin Suk;Song, Hyo Jeong;Oh, Joo Youn - 通讯作者:
Oh, Joo Youn
Kim, Seonghwan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kim, Seonghwan', 18)}}的其他基金
Nanomechanical Devices for Physical and Chemical Sensing Applications
用于物理和化学传感应用的纳米机械器件
- 批准号:
RGPIN-2020-03943 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nanomechanical Devices for Physical and Chemical Sensing Applications
用于物理和化学传感应用的纳米机械器件
- 批准号:
RGPIN-2020-03943 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nanomechanical Devices for Physical and Chemical Sensing Applications
用于物理和化学传感应用的纳米机械器件
- 批准号:
RGPIN-2020-03943 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nanomechanical Devices for Physical and Chemical Sensing Applications
用于物理和化学传感应用的纳米机械器件
- 批准号:
RGPIN-2020-03943 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
- 批准号:
561065-2020 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Alliance Grants
相似海外基金
Discovering Novel Properties in Few-Layer MXenes Using Analytical, In-Situ Scanning Transmission Electron Microscopy
使用分析原位扫描透射电子显微镜发现少层 MXene 的新特性
- 批准号:
2309396 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Continuing Grant
High yield production of phase-pure mono- or few-layer two-dimensional (2D) nanosheets of graphene like materials by electrochemical exfoliation
通过电化学剥离高产率生产纯相单层或少层二维(2D)石墨烯类材料纳米片
- 批准号:
571325-2021 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Alliance Grants
High yield production of phase-pure mono- or few-layer two-dimensional (2D) nanosheets of graphene like materials by electrochemical exfoliation
通过电化学剥离高产率生产纯相单层或少层二维(2D)石墨烯类材料纳米片
- 批准号:
571325-2021 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Alliance Grants
CAS: Collaborative Research: Solar CO2 Reduction by Atomically Dispersed Metal Sites on Few-Layer Carbon Nitride
CAS:合作研究:通过少层氮化碳上的原子分散金属位点减少太阳能二氧化碳
- 批准号:
2102198 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Standard Grant
Research into many-body quantum phenomena characteristic of few-layer Dirac-electron systems
少层狄拉克电子系统的多体量子现象特征研究
- 批准号:
21K03534 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)