Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery

风电场阻塞和远场尾流恢复的降阶模型

基本信息

  • 批准号:
    556326-2020
  • 负责人:
  • 金额:
    $ 2.23万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Wind energy is Canada's fastest-growing form of renewable energy, with annual investment in Canada exceeding one billion dollars in 2019. Still, achieving national renewable energy targets will require Canada's wind capacity to be significantly increased in the coming decades. New projects require accurate prediction of the energy production potential of a planned wind farm. Such predictions are made using wind farm design tools such as OpenWind®, an industry-leading software developed by UL LLC for layout planning and resource estimation of proposed wind energy sites. To yield accurate predictions, wind farm design software require well-validated but simultaneously low-cost models that capture the aeolian and aerodynamic processes within the wind farm. While such models have been used for hundreds of wind projects, recent studies have shown that the recovery of the low-energy wake downwind and the blockage effect upwind of the wind farm are poorly predicted. Far-field recovery of the wake behind a wind farm is very important for assessing the impact of neighboring wind farms on the overall generation potential. Blockage effects, where the oncoming wind slows down in response to the presence of the wind farm, were historically assumed to be negligible. Recent studies, however, have shown that ignoring blockage yields over-prediction of the wind farm's generation potential. In collaboration with UL, a large series of high-fidelity computational fluid dynamic simulations will be conducted of virtual wind farms, from which improved reduced-order models for wind farm blockage and far-field wake recovery will be developed and validated against field measurements of real wind farms. The project promises to increase the accuracy of power forecasting for new wind projects and promote investment in Canada's wind-rich coastal and northern regions, accelerating Canada's transition to clean energy sources.
风能是加拿大增长最快的可再生能源形式,2019年加拿大的年度投资超过10亿美元。不过,要实现国家可再生能源目标,加拿大的风电装机容量需要在未来几十年内大幅增加,新项目需要准确预测。此类预测是使用 OpenWind® 等风电场设计工具进行的,OpenWind® 是由 UL LLC 开发的行业领先软件,用于拟议风能站点的布局规划和资源估算。 、风电场设计软件需要经过充分验证但成本低廉的模型来捕获风电场内的风和空气动力学过程,虽然此类模型已用于数百个风电项目,但最近的研究表明,顺风和低能量尾流的恢复。风电场逆风处的阻塞效应预测不佳 风电场后面尾流的远场恢复对于评估邻近风电场对整体发电潜力的影响非常重要,因为风电场迎面而来的风会减慢。对存在的响应然而,最近的研究表明,忽略堵塞产量会过度预测风电场的发电潜力,将与 UL 合作进行一系列高保真计算流体动力学模拟。该项目有望提高新风电场功率预测的准确性,并根据实际风电场的现场测量来开发和验证风电场阻塞和远场尾流恢复的改进降阶模型。促进投资加拿大沿海和北部地区风力资源丰富,加速了加拿大向清洁能源的转型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brinkerhoff, Joshua其他文献

Brinkerhoff, Joshua的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brinkerhoff, Joshua', 18)}}的其他基金

Cryogenic Flow Physics to Advance Liquid Hydrogen-Based Aviation
低温流动物理学推动液氢航空发展
  • 批准号:
    RGPIN-2021-02450
  • 财政年份:
    2022
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of Turbulent Heat Transfer Enhancement in Steam-Cracking Furnace Tubes with Modified Internal Textures
改进内部织构的蒸汽裂解炉管强化湍流传热的评价
  • 批准号:
    549243-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Alliance Grants
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
  • 批准号:
    519885-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Collaborative Research and Development Grants
Cryogenic Flow Physics to Advance Liquid Hydrogen-Based Aviation
低温流动物理学推动液氢航空发展
  • 批准号:
    RGPIN-2021-02450
  • 财政年份:
    2021
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
  • 批准号:
    519885-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Collaborative Research and Development Grants
Evaluation of Turbulent Heat Transfer Enhancement in Steam-Cracking Furnace Tubes with Modified Internal Textures
改进内部织构的蒸汽裂解炉管强化湍流传热的评价
  • 批准号:
    549243-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Alliance Grants
Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery
风电场阻塞和远场尾流恢复的降阶模型
  • 批准号:
    556326-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Alliance Grants
Compressible flow in a novel radial turbo compressor: simulation and experimental validation
新型径向涡轮压缩机中的可压缩流动:模拟和实验验证
  • 批准号:
    538568-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Engage Grants Program
Towards a General Analytical Model of Aerodynamic and Phase Instabilities in Advanced Fluid Machinery
先进流体机械中空气动力学和相位不稳定性的通用分析模型
  • 批准号:
    RGPIN-2015-06562
  • 财政年份:
    2019
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
  • 批准号:
    519885-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
  • 批准号:
    62303255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
针对动态无线充电系统的基于事件触发和命令滤波的保性能控制方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
不确定非线性约束系统的有限时间命令滤波模糊控制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
不同环境规制下绿色创新效应研究:微观机制与政策选择
  • 批准号:
    71903063
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
  • 批准号:
    2345048
  • 财政年份:
    2023
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
Tensorial Reduced Order Models: Development, Analysis, and Applications
张量降阶模型:开发、分析和应用
  • 批准号:
    2309197
  • 财政年份:
    2023
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
CAREER: Scale-dependent reduced-order models for turbulent flows
职业:湍流的尺度相关降阶模型
  • 批准号:
    2237537
  • 财政年份:
    2022
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Continuing Grant
Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery
风电场阻塞和远场尾流恢复的降阶模型
  • 批准号:
    556326-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Alliance Grants
Bayesian Uncertainty Quantification for Microfluidics: Assessing and Improving the Reliability of Reduced-Order Models and Sample Detection Schemes
微流体的贝叶斯不确定性量化:评估和提高降阶模型和样品检测方案的可靠性
  • 批准号:
    459970814
  • 财政年份:
    2021
  • 资助金额:
    $ 2.23万
  • 项目类别:
    WBP Position
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了