Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
基本信息
- 批准号:RGPIN-2020-05485
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Infectious diseases are a global problem worldwide. Although we have had some success in reducing disease prevalence in the Western world, many diseases continue to threaten developing nations, with over 50% of the world's population at risk for one or more transmissible infections. Emerging infections such as West Nile Virus, SARS and swine flu have threatened the West in recent years, with potential pandemics from avian influenza, MERS and others looming. Many of the effects of such interventions occur in short bursts or shocks. For example, National Immunization Days (NIDs) for measles, polio etc. occur in many developing countries over 12 days, twice a year. During this time, millions of children are vaccinated at once. India vaccinates 174,000,000 children in a single NID. On a smaller scale, antiretroviral treatment for HIV involves taking pills, whose duration of action is about 20 minutes long, significantly shorter than the period of hours between pills. To analyse these effects, we will develop mathematical models using impulsive differential equations, impulse extension equations and Filippov systems. These methods are used to analyse short, sharp shocks, either in the state variables or their derivatives. Impulsive differential equations are founded upon the assumption that it is often natural to assume that sufficiently short perturbations in the system occur instantaneously, since their length is negligible in comparison with the duration of the process. Impulse extension equations address the question of the validity of the assumption that the duration of short bursts can be ignored by extending the impulsive differential equation to include its continuous analogue, in order to compare the two. Filippov systems are dynamical systems with discontinuities in the derivatives. Filippov systems lend themselves to imposing an economic threshold: when the cost of a disease is sufficiently high, action will be instigated. We will use these formulations to analyse the effects of stochastic variations on the pivot points. Much work has been done on stochastic differential equations in the past; however, very little has been done on the effects of stochasticity on discontinuous approximations. E.g., for impulsive differential equations, the timing of the impulse may vary, as well as the strength of the jump. The location of Filippov thresholds may be subject to variation, which may have implications for both real and virtual equilibria that are located near the threshold. By harnessing the power of short-burst modelling, a great many problems can be analysed using novel mathematical techniques. By investigating the effect of stochastic variations on the threshold, we can develop an interface between mathematics and human behaviour. This will be useful in an applied context when dealing with biological, physical or other real-world models where thresholds are important, but the actions of humans may reduce the predictability of the outcome.
传染病是世界范围内的全球性问题。尽管我们在减少西方世界疾病流行方面取得了一些成功,但许多疾病继续威胁着发展中国家,世界上超过 50% 的人口面临一种或多种传染性感染的风险。近年来,西尼罗河病毒、非典和猪流感等新出现的传染病威胁着西方,禽流感、中东呼吸综合征等潜在大流行病迫在眉睫。此类干预措施的许多影响都是在短暂的爆发或冲击中发生的。例如,许多发展中国家每年举办两次针对麻疹、脊髓灰质炎等疾病的国家免疫日(NID),为期 12 天以上。在此期间,数百万儿童同时接种疫苗。印度在一次 NID 中为 1.74 亿儿童接种了疫苗。在较小范围内,艾滋病毒的抗逆转录病毒治疗涉及服用药物,其作用持续时间约为 20 分钟,明显短于服药之间的时间间隔。为了分析这些影响,我们将使用脉冲微分方程、脉冲扩展方程和 Filippov 系统开发数学模型。这些方法用于分析状态变量或其导数中的短期剧烈冲击。脉冲微分方程建立在这样的假设之上:通常很自然地假设系统中的足够短的扰动是瞬时发生的,因为与过程的持续时间相比,它们的长度可以忽略不计。脉冲扩展方程解决了假设的有效性问题,即通过扩展脉冲微分方程以包括其连续模拟,可以忽略短脉冲的持续时间,以便比较两者。 Filippov 系统是导数不连续的动力系统。菲利波夫系统有助于设定经济门槛:当疾病的成本足够高时,就会采取行动。我们将使用这些公式来分析随机变化对枢轴点的影响。过去,人们在随机微分方程方面做了很多工作;然而,关于随机性对不连续近似的影响却知之甚少。例如,对于脉冲微分方程,脉冲的时间以及跳跃的强度可能会变化。 Filippov 阈值的位置可能会发生变化,这可能会对位于阈值附近的真实平衡和虚拟平衡产生影响。通过利用短突发建模的力量,可以使用新颖的数学技术来分析大量问题。通过研究随机变化对阈值的影响,我们可以开发数学和人类行为之间的接口。当处理生物、物理或其他现实世界模型时,这在应用环境中非常有用,其中阈值很重要,但人类的行为可能会降低结果的可预测性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Smith, Robert其他文献
Genetic determinants of mouse hepatitis virus strain 1 pneumovirulence.
小鼠肝炎病毒1型肺毒力的遗传决定因素。
- DOI:
- 发表时间:
2010-09 - 期刊:
- 影响因子:0
- 作者:
Leibowitz, Julian L;Srinivasa, Rajiv;Williamson, Shawn T;Chua, Ming Ming;Liu, Mingfeng;Wu, Samantha;Kang, Hyojeung;Ma, Xue;Zhang, Jianhua;Shalev, Itay;Smith, Robert;Phillips, Melville J;Levy, Gary A;Weiss, Susan R - 通讯作者:
Weiss, Susan R
Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders.
能够产生细胞毒性 T 淋巴细胞的骨髓瘤特异性多肽:在多发性骨髓瘤和其他浆细胞疾病中的潜在治疗应用。
- DOI:
- 发表时间:
2012-09-01 - 期刊:
- 影响因子:0
- 作者:
Bae, Jooeun;Smith, Robert;Daley, John;Mimura, Naoya;Tai, Yu;Anderson, Kenneth C;Munshi, Nikhil C - 通讯作者:
Munshi, Nikhil C
<i>MRtrix3</i>: A fast, flexible and open software framework for medical image processing and visualisation
- DOI:
10.1016/j.neuroimage.2019.116137 - 发表时间:
2019-11-15 - 期刊:
- 影响因子:5.7
- 作者:
Tournier, J-Donald;Smith, Robert;Connelly, Alan - 通讯作者:
Connelly, Alan
Uncovering mechanisms of co-authorship evolution by multirelations-based link prediction
通过基于多关系的链接预测揭示共同作者演化机制
- DOI:
10.1007/s40273-022-01229-4 - 发表时间:
2023-03 - 期刊:
- 影响因子:8.6
- 作者:
Thokala, Praveen;Srivastava, Tushar;Smith, Robert;Ren, Shijie;Whittington, Melanie D.;Elvidge, Jamie;Wong, Ruth;Uttley, Lesley - 通讯作者:
Uttley, Lesley
Psychometric Evaluation of the Chinese Version of a Weight-Related Eating Questionnaire Using an Item Response Theory Approach.
- DOI:
10.3390/nu14081627 - 发表时间:
2022-04-13 - 期刊:
- 影响因子:5.9
- 作者:
Ho, Mandy;Smith, Robert;Chau, Pui-Hing;Chung, Cheuk-Yan;Schembre, Susan M.;Fong, Daniel Y. T. - 通讯作者:
Fong, Daniel Y. T.
Smith, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Smith, Robert', 18)}}的其他基金
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
DGECR-2022-00086 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Launch Supplement
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
RGPIN-2022-03277 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
DGECR-2022-00086 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Launch Supplement
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
RGPIN-2022-03277 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Using past pandemics to guide COVID-19 predictions
利用过去的流行病来指导 COVID-19 预测
- 批准号:
554986-2020 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Alliance Grants
Using past pandemics to guide COVID-19 predictions
利用过去的流行病来指导 COVID-19 预测
- 批准号:
554986-2020 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Alliance Grants
相似国自然基金
猫传染性腹膜炎病毒刺突蛋白识别受体的分子机制研究
- 批准号:32302856
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CT组学预测呼吸道传染性重症病毒肺炎的生物学机制研究
- 批准号:82302335
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Viperin作用脂筏影响禽传染性支气管炎病毒感染的研究
- 批准号:32360871
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
丁酸梭菌促进I型干扰素表达抑制禽传染性支气管炎病毒复制的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸡补体受体Ⅱ蛋白促进鸡传染性法氏囊病病毒复制的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Modelling the spread of infectious diseases in forest systems
模拟森林系统中传染病的传播
- 批准号:
2836457 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Studentship
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
External validation and updating of prognostic models to identify hospitalized children at highest risk of in-hospital mortality in low-resource settings
外部验证和更新预后模型,以确定资源匮乏地区住院死亡率最高风险的住院儿童
- 批准号:
485885 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Studentship Programs
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual