Small lasers: Towards future photonic technologies

小型激光器:迈向未来的光子技术

基本信息

  • 批准号:
    RGPIN-2019-04726
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The global energy demand is projected to increase by almost 50% from 2012 to 2040. It is critical to address this challenge with new energy efficient technologies. The PI's research exploits high quality, low-dimensional materials to develop next generation devices. The proposed research continues the PI's endeavor in improving the efficiency of using energy through innovating photonic devices with group-III nitride nanostructures, far beyond the current state of the art. This program represents an ideal blend of dissemination of scientific knowledge across multiple disciplines and training of a new generation of high caliber scientists, and is unlike any other in Canada. It offers to train at least 4 students (2 PhD and 2 MEng) over the 5 year period. The long-term goal is to realize compact (size of a few cm3) and high power (watt-level) nanolasers in the visible and deep ultraviolet optical bands. To reach this long-term goal, it is imperative to understand the basic limitations of having such high power lasers, e.g., what are the key factors and what would be the optimized conditions. Therefore, in the short term, the PI's team aim to establish a fundamental understanding of these basic limitations, through developing color tunable and deep ultraviolet photonic crystal lasers with group-III nitride nanostructures, built upon the PI's preliminary results and intensive experience with these materials. Achieving these two short-term goals, the PI's team will establish strategies and building blocks to enable future high power compact nanolasers. Why is this research important? It is simply because we all need light and lasers are the most energy efficient technology to produce light; and the focused optical bands are highly relevant to our daily lives. In the visible, they will enable light sources that can be used for laser lighting, Li-Fi, among others; and with Li-Fi alone the projected market size is over $70B US dollars by 2023. In the deep ultraviolet, they will enable disruptive technologies, e.g., portable disinfection and bio/chemical sensing devices. This program will impact Canadians profoundly. Canada has vast north territories, where there are remote communities and deployed workers working there. In these areas, energy efficiency and device portability are critically important, as traditional energy sources, e.g., power grids, are hard to implement. The high power compact nanolaser technologies expected to be created through this program will positively impact their life quality, from lighting to drinking water disinfection, bio/chemical hazards detection, and so on. This program could also influence international communities. Recently, a student who wants to join the PI's research mentioned in email that the research is very attractive, because the potential technologies can help people in the student's home country. Clearly, the impact of this program on human society will surpass its impact on science and technology.
预计从 2012 年到 2040 年,全球能源需求将增长近 50%。利用新的节能技术应对这一挑战至关重要。 PI 的研究利用高质量、低维材料来开发下一代设备。拟议的研究继续了 PI 通过创新具有 III 族氮化物纳米结构的光子器件来提高能源使用效率的努力,远远超出了当前的技术水平。该项目代表了跨学科传播科学知识和培训新一代高素质科学家的理想结合,与加拿大的任何其他项目不同。它提供在 5 年期间培训至少 4 名学生(2 名博士和 2 名硕士)。 长期目标是在可见光和深紫外光波段实现紧凑型(尺寸为几cm3)和高功率(瓦级)纳米激光器。为了实现这一长期目标,必须了解拥有如此高功率激光器的基本限制,例如,关键因素是什么以及优化条件是什么。因此,在短期内,PI团队的目标是基于PI的初步结果和对这些材料的丰富经验,通过开发具有III族氮化物纳米结构的颜色可调谐和深紫外光子晶体激光器,对这些基本限制有一个基本的了解。 。为了实现这两个短期目标,PI 团队将制定战略和构建模块,以实现未来的高功率紧凑型纳米激光器。 为什么这项研究很重要?这只是因为我们都需要光,而激光是最节能的光产生技术;聚焦的光学波段与我们的日常生活高度相关。在可见光领域,它们将实现可用于激光照明、Li-Fi 等的光源;仅 Li-Fi 一项,预计到 2023 年市场规模将超过 70B 美元。在深紫外领域,它们将实现颠覆性技术,例如便携式消毒和生物/化学传感设备。 该计划将对加拿大人产生深远的影响。加拿大拥有广阔的北部地区,那里有偏远社区并部署在那里工作的工人。在这些领域,能源效率和设备便携性至关重要,因为传统能源(例如电网)很难实施。预计通过该计划创建的高功率紧凑型纳米激光技术将对他们的生活质量产生积极影响,从照明到饮用水消毒、生物/化学危害检测等。该计划还可能影响国际社会。最近,一位想加入PI研究的学生在电子邮件中提到,这项研究非常有吸引力,因为潜在的技术可以帮助该学生祖国的人们。显然,这个计划对人类社会的影响将超过其对科学技术的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhao, Songrui其他文献

Study on the coalescence of dislocation-free GaN nanowires on Si and SiOx
AIN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics
  • DOI:
    10.1021/acs.nanolett.7b01068
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Laleyan, David Arto;Zhao, Songrui;Mi, Zetian
  • 通讯作者:
    Mi, Zetian
Extending group-III nitrides to the infrared: Recent advances in InN
Nanogenerators based on vertically aligned InN nanowires
  • DOI:
    10.1039/c5nr06841j
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Liu, Guocheng;Zhao, Songrui;Ban, Dayan
  • 通讯作者:
    Ban, Dayan
Controlled Coalescence of AlGaN Nanowire Arrays: An Architecture for Nearly Dislocation-Free Planar Ultraviolet Photonic Device Applications
  • DOI:
    10.1002/adma.201602645
  • 发表时间:
    2016-10-12
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Le, Binh H.;Zhao, Songrui;Mi, Zetian
  • 通讯作者:
    Mi, Zetian

Zhao, Songrui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhao, Songrui', 18)}}的其他基金

Small lasers: Towards future photonic technologies
小型激光器:迈向未来的光子技术
  • 批准号:
    RGPIN-2019-04726
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Small lasers: Towards future photonic technologies
小型激光器:迈向未来的光子技术
  • 批准号:
    RGPIN-2019-04726
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Small lasers: Towards future photonic technologies
小型激光器:迈向未来的光子技术
  • 批准号:
    RGPIN-2019-04726
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Small lasers: Towards future photonic technologies
小型激光器:迈向未来的光子技术
  • 批准号:
    DGECR-2019-00494
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

强激光场下手性分子光电子圆二向色性的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于前向体散射特性的分视场激光雷达测深误差校正方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
新型激光场下原子的二向色性和光场量子性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于激光雷达的湖泊悬浮物垂向分布遥感反演研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强激光场中原子电离圆二向色性的理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Small lasers: Towards future photonic technologies
小型激光器:迈向未来的光子技术
  • 批准号:
    RGPIN-2019-04726
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Small lasers: Towards future photonic technologies
小型激光器:迈向未来的光子技术
  • 批准号:
    RGPIN-2019-04726
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Tissue-Based Metal Imaging Tools and Their Application Towards Spatiotemporal Mapping of Zinc Fluxes in Ovaries
基于组织的金属成像工具及其在卵巢锌通量时空绘图中的应用
  • 批准号:
    10409224
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
Tissue-Based Metal Imaging Tools and Their Application Towards Spatiotemporal Mapping of Zinc Fluxes in Ovaries
基于组织的金属成像工具及其在卵巢锌通量时空绘图中的应用
  • 批准号:
    10454424
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
Tissue-Based Metal Imaging Tools and Their Application Towards Spatiotemporal Mapping of Zinc Fluxes in Ovaries
基于组织的金属成像工具及其在卵巢锌通量时空绘图中的应用
  • 批准号:
    10226867
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了