Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
基本信息
- 批准号:RGPIN-2018-05635
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mechanical technologies are everywhere in society, from oscillators in timekeeping devices to accelerometers and electronic filters in automobiles and cell phones. They also represent an indispensable tool for fundamental and applied science: using tiny mechanical systems, it is possible to "feel around" surfaces at the atomic scale, detect chemical mass changes with single-proton resolution, and sense element-specific magnetic "tugs" from nanoscale clusters of nuclei (even creating a 3d map). In the field of optomechanics, we have learned to exploit the forces exerted by light to gain an unprecedented level of control over these systems at all size scales, leading to entirely new functionalities for next-generation sensors, including those in which the laws of quantum mechanics play a central role.
Our research aims to realise ultralow-noise micromechanical sensors that are reconfigured and controlled by light in unique ways. To this end, we fabricate delicate "micro-trampolines" exhibiting a world-record combination of force sensitivity and optical performance, such that the radiation force from an average of just one photon -- the smallest quantity of light allowed by nature -- will exert a profound influence over their mechanical trajectories. Here we propose to capitalise upon this breakthrough to demonstrate strong single-photon control, access quantum states of motion, and generate quantum "squeezed" light useful for enhancing interferometers (such as those used to detect gravitational waves). Additionally, by partially levitating related mechanical elements, we will even further enhance their sensitivities by essentially replacing their primary mechanical supports with light (a low-noise alternative to flexible materials). Finally, we will pursue a qualitatively new system in which light strongly controls the spatial distribution of oscillating mass: by optically perturbing a periodic structure ("phononic crystal"), we can smoothly tune the spatial extent of oscillating mass from the centimetre scale to the micron scale in situ -- a level of control that is currently unheard of. Furthermore, due to a collective enhancement effect, a larger device is predicted to exhibit a larger response to a given quantity of light (despite its larger mass) enabling a truly macroscopic response to single-photon light levels in a chip-scale device. In addition to creating new types of reconfigurable mechanical sensing technologies, these complementary efforts build toward fundamental studies of quantum motion at the macro scale, mechanical transduction of quantum information between a variety of "quantum bit" ("qubit") technologies and light (e.g., for long-distance quantum-secured communication), and the detection of zeptonewton forces (equivalent to the gravitational pull between two loaves of bread separated by 100 km).
机械技术在社会中无处不在,从计时设备中的振荡器到汽车和手机中的加速计和电子滤波器。它们还代表了基础科学和应用科学不可或缺的工具:使用微型机械系统,可以在原子尺度上“感知”表面,以单质子分辨率检测化学质量变化,并感测元素特定的磁性“牵引力”来自纳米级原子核簇(甚至创建 3D 地图)。在光力学领域,我们学会了利用光施加的力来对各种尺寸的系统进行前所未有的控制,从而为下一代传感器带来全新的功能,包括那些利用量子定律的传感器机械师发挥着核心作用。
我们的研究旨在实现以独特方式由光重新配置和控制的超低噪声微机械传感器。为此,我们制造了精致的“微型蹦床”,展示了力灵敏度和光学性能的世界纪录组合,使得平均仅一个光子(自然界允许的最小光量)的辐射力将对它们的机械轨迹产生深远的影响。在这里,我们建议利用这一突破来展示强大的单光子控制,访问量子运动态,并生成可用于增强干涉仪(例如用于探测引力波的干涉仪)的量子“压缩”光。此外,通过部分悬浮相关的机械元件,我们甚至可以通过用光(柔性材料的低噪音替代品)取代它们的主要机械支撑来进一步增强它们的灵敏度。最后,我们将追求一种质的新系统,其中光强烈控制振荡质量的空间分布:通过光学扰动周期性结构(“声子晶体”),我们可以平滑地将振荡质量的空间范围从厘米尺度调整到微米级的原位控制——目前闻所未闻的控制水平。此外,由于集体增强效应,预计较大的设备将对给定的光量(尽管其质量较大)表现出更大的响应,从而能够在芯片级设备中对单光子光水平做出真正的宏观响应。除了创造新型可重构机械传感技术之外,这些互补的努力还致力于宏观尺度上量子运动的基础研究、各种“量子位”(“qubit”)技术和光(例如光)之间量子信息的机械转换。 ,用于长距离量子安全通信),以及检测 zeptonewton 力(相当于相距 100 公里的两块面包之间的引力)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sankey(Childress), Jack其他文献
Sankey(Childress), Jack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sankey(Childress), Jack', 18)}}的其他基金
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
- 批准号:
RGPIN-2018-05635 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Fiber Mirror Facility Upgrade for Quantum Optics and Sensing
量子光学和传感光纤镜设施升级
- 批准号:
RTI-2022-00470 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Research Tools and Instruments
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
- 批准号:
RGPIN-2018-05635 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
- 批准号:
RGPIN-2018-05635 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向IPv6下一代互联网的网络空间基础资源测量关键技术研究
- 批准号:62302253
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新一代地下工程原位岩体强度建构方法基础研究
- 批准号:52334004
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
基于从头设计蛋白质的新一代CAR-T免疫疗法的研发
- 批准号:32370989
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
创制可转化利用木质素基酚类化合物的新一代产油红酵母
- 批准号:22308350
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于中日两国新一代地球静止轨道卫星的植被初级生产力遥感
- 批准号:42311540014
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
- 批准号:
RGPIN-2018-05635 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Development of low-damping piezoelectric material suitable for acoustic wave devices for next-generation communication 6G
开发适用于下一代通信6G声波器件的低阻尼压电材料
- 批准号:
22K18786 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Ultra low power communication for next-generation wireless systems
下一代无线系统的超低功耗通信
- 批准号:
22K11989 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
- 批准号:
RGPIN-2018-05635 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Injection scheme development using ceramics with integrated multi-pole kicker for fitting to next generation ultra low emittance ring
使用具有集成多极踢脚器的陶瓷开发注射方案,以适应下一代超低发射环
- 批准号:
19K12649 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)