Ultrafast Molecular Sciences
超快分子科学
基本信息
- 批准号:RGPIN-2016-06677
- 负责人:
- 金额:$ 7.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular sciences in the 20th century was based on understanding the structure of the microscopic world. It is hard to overstate how important this was. Discerning the shapes of molecules and solids led to structure-function relationships which engendered Molecular Biology, computer chips, plastics and drug design. Nature, however, is not static: there are many rapid molecular processes underlying photosynthesis, vision, solar energy conversion etc. In the 21st century, we must go beyond structure' and develop a dynamical understanding of nature's processes. This proposal is directed towards this goal. Specifically, using novel ultrafast electron and X-ray techniques, we will study fundamental aspects of molecular dynamics, with a view towards developing simple rules' which govern how, on ultrafast (femtosecond) time scales, electronic charge and energy flow during such processes. Ultrafast Molecular Sciences is based on revolutionary advances in high power laser technology, now permitting ultrashort pulse generation from the infrared to the soft X-ray regions. This proposal builds on CFI-supported major infrastructure, with NSERC-supported HQPs carrying out the research program.
High power ultrashort pulse laser technology offers many new opportunities beyond generating IR or X-ray pulses. The electric forces associated with such light pulses can be even stronger than the electric forces which bind matter itself. This means that researchers can align or shape molecules using laser fields. Here, we will use our ability align molecules. Molecules are generally randomly oriented and therefore our studies of their dynamics are somewhat blurred. Much like forcing children to line up for a group photograph, we can use laser electric forces to line molecules up so that we may observe their dynamical processes much more clearly. We will develop techniques for aligning molecules in 3D, allowing us to apply our novel electron and X-ray spectroscopies to them with maximal benefit.
As ultrashort laser fields get even stronger, new physical processes occur. One process, called strong field ionization, has led to a new branch of physics called Attosecond Science, itself a Canadian invention. This field has produced the world's shortest light pulses and now permits researchers to study the fastest processes within molecules namely, how electrons move within molecules and materials. However, the models and techniques developed thus far only apply to very simple systems such as atoms. In order to broaden the scope, we will study how these attosecond methods apply to more complex molecules, a requirement for advancement.
Finally, we use ultrashort pulses to develop new forms of microscopy which permit chemical-specific imaging of samples without adding any dyes or stains. This new type of imaging is important for fields ranging from biomedicine, to material science, to natural resources.
20 世纪的分子科学基于对微观世界结构的理解。很难夸大这一点的重要性。辨别分子和固体的形状导致了结构与功能的关系,从而产生了分子生物学、计算机芯片、塑料和药物设计。然而,自然并不是静态的:光合作用、视觉、太阳能转换等背后存在许多快速的分子过程。在 21 世纪,我们必须超越结构,发展对自然过程的动态理解。本提案就是为了实现这一目标而提出的。具体来说,我们将利用新型超快电子和 X 射线技术,研究分子动力学的基本方面,着眼于开发简单的规则,以控制超快(飞秒)时间尺度上的电子电荷和能量在此类过程中的流动。超快分子科学基于高功率激光技术的革命性进步,现在可以产生从红外到软 X 射线区域的超短脉冲。该提案建立在 CFI 支持的主要基础设施之上,并由 NSERC 支持的 HQP 开展研究计划。
高功率超短脉冲激光技术除了产生红外或 X 射线脉冲之外,还提供了许多新的机会。与这种光脉冲相关的电力甚至可以比束缚物质本身的电力更强。这意味着研究人员可以使用激光场排列或塑造分子。在这里,我们将使用我们的能力排列分子。分子通常是随机定向的,因此我们对其动力学的研究有些模糊。就像强迫孩子们排队拍照一样,我们可以使用激光电力将分子排列起来,以便我们可以更清楚地观察它们的动态过程。我们将开发 3D 分子排列技术,使我们能够将新颖的电子和 X 射线光谱应用于它们,从而获得最大的效益。
随着超短激光场变得更强,新的物理过程就会发生。一个称为强场电离的过程催生了物理学的一个新分支,称为阿秒科学,它本身是加拿大的发明。该领域产生了世界上最短的光脉冲,现在允许研究人员研究分子内最快的过程,即电子如何在分子和材料内移动。然而,迄今为止开发的模型和技术仅适用于非常简单的系统,例如原子。为了扩大范围,我们将研究这些阿秒方法如何应用于更复杂的分子,这是进步的要求。
最后,我们使用超短脉冲开发新型显微镜,无需添加任何染料或染色剂即可对样品进行化学特异性成像。这种新型成像对于生物医学、材料科学和自然资源等领域都很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stolow, Albert其他文献
Substituent effects on dynamics at conical intersections:: α,β-enones
- DOI:
10.1021/jp074622j - 发表时间:
2007-11-29 - 期刊:
- 影响因子:2.9
- 作者:
Lee, A. M. D.;Coe, J. D.;Stolow, Albert - 通讯作者:
Stolow, Albert
Primary processes underlying the photostability of isolated DNA bases: Adenine
- DOI:
10.1073/pnas.0602663103 - 发表时间:
2006-07-05 - 期刊:
- 影响因子:11.1
- 作者:
Satzger, Helmut;Townsend, Dave;Stolow, Albert - 通讯作者:
Stolow, Albert
TIME-RESOLVED PHOTOELECTRON SPECTROSCOPY OF NONADIABATIC DYNAMICS IN POLYATOMIC MOLECULES
- DOI:
10.1002/9780470259498.ch6 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:0
- 作者:
Stolow, Albert;Underwood, Jonathan G. - 通讯作者:
Underwood, Jonathan G.
Dynamics at Conical Intersections
- DOI:
10.1146/annurev-physchem-052516-050721 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:0
- 作者:
Schuurman, Michael S.;Stolow, Albert - 通讯作者:
Stolow, Albert
Non-Born-Oppenheimer wavepacket dynamics in polyatomic molecules: vibrations at conical intersections in DABCO
- DOI:
10.1039/c0fd00033g - 发表时间:
2011-01-01 - 期刊:
- 影响因子:3.4
- 作者:
Boguslavskiy, Andrey E.;Schuurman, Michael S.;Stolow, Albert - 通讯作者:
Stolow, Albert
Stolow, Albert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stolow, Albert', 18)}}的其他基金
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2022-05325 - 财政年份:2022
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Tuneable Femtosecond Laser Sources for Time-Resolved Ultrafast Spectroscopy
用于时间分辨超快光谱的可调谐飞秒激光源
- 批准号:
RTI-2022-00316 - 财政年份:2021
- 资助金额:
$ 7.87万 - 项目类别:
Research Tools and Instruments
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2016-06677 - 财政年份:2021
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Molecular Photonics & Biophotonics
分子光子学
- 批准号:
1000228940-2012 - 财政年份:2020
- 资助金额:
$ 7.87万 - 项目类别:
Canada Research Chairs
Advanced Imaging Analytics for Gold Mining
金矿开采高级成像分析
- 批准号:
543627-2019 - 财政年份:2020
- 资助金额:
$ 7.87万 - 项目类别:
Collaborative Research and Development Grants
Molecular Photonics & Biophotonics
分子光子学
- 批准号:
1000228940-2012 - 财政年份:2019
- 资助金额:
$ 7.87万 - 项目类别:
Canada Research Chairs
Advanced Imaging Analytics for Gold Mining
金矿开采高级成像分析
- 批准号:
543627-2019 - 财政年份:2019
- 资助金额:
$ 7.87万 - 项目类别:
Collaborative Research and Development Grants
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2016-06677 - 财政年份:2019
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于分子感官科学的热处理刺梨汁关键香气成分鉴定及其呈香机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
Co基双金属分子筛催化剂的科学构建及其在丙烷-CO2耦合脱氢制丙烯反应研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等离激元超构表面的生物分子定制化传感关键科学问题研究
- 批准号:62175205
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
轻质高强高分子泡沫凝胶乳液模板法制备中的关键科学问题研究
- 批准号:22132002
- 批准年份:2021
- 资助金额:304 万元
- 项目类别:重点项目
面向天然气脱CO2的DD3R分子筛膜工程放大科学规律研究
- 批准号:
- 批准年份:2020
- 资助金额:300 万元
- 项目类别:重点项目
相似海外基金
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2022-05325 - 财政年份:2022
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2016-06677 - 财政年份:2021
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Non-equilibrium dynamics of quantum order in strongly correlated electron system revealed by using ultrafast x-ray pulses
利用超快 X 射线脉冲揭示强相关电子系统中量子级的非平衡动力学
- 批准号:
21K03457 - 财政年份:2021
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enantio-selection by ultrafast control of molecular motion
通过分子运动的超快控制进行对映体选择
- 批准号:
20K21169 - 财政年份:2020
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2016-06677 - 财政年份:2019
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual