Ultrafast Molecular Sciences
超快分子科学
基本信息
- 批准号:RGPIN-2016-06677
- 负责人:
- 金额:$ 7.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular sciences in the 20th century was based on understanding the structure of the microscopic world. It is hard to overstate how important this was. Discerning the shapes of molecules and solids led to structure-function relationships which engendered Molecular Biology, computer chips, plastics and drug design. Nature, however, is not static: there are many rapid molecular processes underlying photosynthesis, vision, solar energy conversion etc. In the 21st century, we must go beyond structure' and develop a dynamical understanding of nature's processes. This proposal is directed towards this goal. Specifically, using novel ultrafast electron and X-ray techniques, we will study fundamental aspects of molecular dynamics, with a view towards developing simple rules' which govern how, on ultrafast (femtosecond) time scales, electronic charge and energy flow during such processes. Ultrafast Molecular Sciences is based on revolutionary advances in high power laser technology, now permitting ultrashort pulse generation from the infrared to the soft X-ray regions. This proposal builds on CFI-supported major infrastructure, with NSERC-supported HQPs carrying out the research program.
High power ultrashort pulse laser technology offers many new opportunities beyond generating IR or X-ray pulses. The electric forces associated with such light pulses can be even stronger than the electric forces which bind matter itself. This means that researchers can align or shape molecules using laser fields. Here, we will use our ability align molecules. Molecules are generally randomly oriented and therefore our studies of their dynamics are somewhat blurred. Much like forcing children to line up for a group photograph, we can use laser electric forces to line molecules up so that we may observe their dynamical processes much more clearly. We will develop techniques for aligning molecules in 3D, allowing us to apply our novel electron and X-ray spectroscopies to them with maximal benefit.
As ultrashort laser fields get even stronger, new physical processes occur. One process, called strong field ionization, has led to a new branch of physics called Attosecond Science, itself a Canadian invention. This field has produced the world's shortest light pulses and now permits researchers to study the fastest processes within molecules namely, how electrons move within molecules and materials. However, the models and techniques developed thus far only apply to very simple systems such as atoms. In order to broaden the scope, we will study how these attosecond methods apply to more complex molecules, a requirement for advancement.
Finally, we use ultrashort pulses to develop new forms of microscopy which permit chemical-specific imaging of samples without adding any dyes or stains. This new type of imaging is important for fields ranging from biomedicine, to material science, to natural resources.
20世纪的分子科学是基于了解微观世界的结构。很难高估这有多重要。辨别分子和固体的形状导致结构功能关系,从而导致分子生物学,计算机芯片,塑料和药物设计。然而,自然不是静态的:光合作用,视觉,太阳能转换等基础的快速分子过程等,在21世纪,我们必须超越结构,并对自然过程产生动态理解。该提议针对这一目标。具体而言,使用新型的超快电子和X射线技术,我们将研究分子动力学的基本方面,以期为制定简单规则的规定,该规则在此类过程中如何控制超快(fomtsecond)时间尺度,电子电荷和能量流。 Ultrafast分子科学基于高功率激光技术的革命进步,现在允许从红外线到软X射线区域的超短脉冲产生。该提案建立在CFI支持的主要基础设施的基础上,NSERC支持的HQP执行了研究计划。
高功率Ultrashort Pulse激光技术除了产生IR或X射线脉冲外,还提供了许多新的机会。与这种光脉冲相关的电力可能比结合物质本身的电力更强大。这意味着研究人员可以使用激光场对齐或塑造分子。在这里,我们将使用我们的能力对齐分子。分子通常是随机定向的,因此我们对它们的动力学的研究有些模糊。就像强迫儿童排队拍摄小组照片一样,我们可以使用激光电力来对付分子,以便我们可以更清楚地观察他们的动态过程。我们将开发用于对齐分子在3D中的技术,从而使我们能够以最大的益处将新型的电子和X射线光谱应用于它们。
随着Ultrashort激光场变得更加强大,发生了新的物理过程。一个称为强场电离的过程导致了一个新的物理学分支,称为Attosecond Science,本身就是加拿大发明。该领域产生了世界上最短的光脉冲,现在允许研究人员研究分子中最快的过程,即电子如何在分子和材料中移动。但是,到目前为止开发的模型和技术仅适用于原子等非常简单的系统。为了扩大范围,我们将研究这些ATTOSOND方法如何应用于更复杂的分子,这是进步的要求。
最后,我们使用Ultrastort脉冲来开发新形式的显微镜,这些脉冲可以允许对样品进行化学特异性成像,而无需添加任何染料或污渍。这种新型的成像对于从生物医学,材料科学到自然资源的田地很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stolow, Albert其他文献
Substituent effects on dynamics at conical intersections:: α,β-enones
- DOI:
10.1021/jp074622j - 发表时间:
2007-11-29 - 期刊:
- 影响因子:2.9
- 作者:
Lee, A. M. D.;Coe, J. D.;Stolow, Albert - 通讯作者:
Stolow, Albert
TIME-RESOLVED PHOTOELECTRON SPECTROSCOPY OF NONADIABATIC DYNAMICS IN POLYATOMIC MOLECULES
- DOI:
10.1002/9780470259498.ch6 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:0
- 作者:
Stolow, Albert;Underwood, Jonathan G. - 通讯作者:
Underwood, Jonathan G.
Dynamics at Conical Intersections
- DOI:
10.1146/annurev-physchem-052516-050721 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:0
- 作者:
Schuurman, Michael S.;Stolow, Albert - 通讯作者:
Stolow, Albert
Primary processes underlying the photostability of isolated DNA bases: Adenine
- DOI:
10.1073/pnas.0602663103 - 发表时间:
2006-07-05 - 期刊:
- 影响因子:11.1
- 作者:
Satzger, Helmut;Townsend, Dave;Stolow, Albert - 通讯作者:
Stolow, Albert
Non-Born-Oppenheimer wavepacket dynamics in polyatomic molecules: vibrations at conical intersections in DABCO
- DOI:
10.1039/c0fd00033g - 发表时间:
2011-01-01 - 期刊:
- 影响因子:3.4
- 作者:
Boguslavskiy, Andrey E.;Schuurman, Michael S.;Stolow, Albert - 通讯作者:
Stolow, Albert
Stolow, Albert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stolow, Albert', 18)}}的其他基金
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2022-05325 - 财政年份:2022
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Tuneable Femtosecond Laser Sources for Time-Resolved Ultrafast Spectroscopy
用于时间分辨超快光谱的可调谐飞秒激光源
- 批准号:
RTI-2022-00316 - 财政年份:2021
- 资助金额:
$ 7.87万 - 项目类别:
Research Tools and Instruments
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2016-06677 - 财政年份:2021
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Molecular Photonics & Biophotonics
分子光子学
- 批准号:
1000228940-2012 - 财政年份:2020
- 资助金额:
$ 7.87万 - 项目类别:
Canada Research Chairs
Advanced Imaging Analytics for Gold Mining
金矿开采高级成像分析
- 批准号:
543627-2019 - 财政年份:2020
- 资助金额:
$ 7.87万 - 项目类别:
Collaborative Research and Development Grants
Molecular Photonics & Biophotonics
分子光子学
- 批准号:
1000228940-2012 - 财政年份:2019
- 资助金额:
$ 7.87万 - 项目类别:
Canada Research Chairs
Advanced Imaging Analytics for Gold Mining
金矿开采高级成像分析
- 批准号:
543627-2019 - 财政年份:2019
- 资助金额:
$ 7.87万 - 项目类别:
Collaborative Research and Development Grants
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2016-06677 - 财政年份:2019
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Co基双金属分子筛催化剂的科学构建及其在丙烷-CO2耦合脱氢制丙烯反应研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分子感官科学的热处理刺梨汁关键香气成分鉴定及其呈香机制研究
- 批准号:32260641
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
Co基双金属分子筛催化剂的科学构建及其在丙烷-CO2耦合脱氢制丙烯反应研究
- 批准号:22202047
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
分子自旋科学与技术前沿交叉研判研究
- 批准号:L2224037
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:专项项目
基于分子感官科学的热处理刺梨汁关键香气成分鉴定及其呈香机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2022-05325 - 财政年份:2022
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2016-06677 - 财政年份:2021
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Non-equilibrium dynamics of quantum order in strongly correlated electron system revealed by using ultrafast x-ray pulses
利用超快 X 射线脉冲揭示强相关电子系统中量子级的非平衡动力学
- 批准号:
21K03457 - 财政年份:2021
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enantio-selection by ultrafast control of molecular motion
通过分子运动的超快控制进行对映体选择
- 批准号:
20K21169 - 财政年份:2020
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Ultrafast Molecular Sciences
超快分子科学
- 批准号:
RGPIN-2016-06677 - 财政年份:2019
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual