Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
基本信息
- 批准号:RGPIN-2016-03978
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For decades transportation vehicles have utilized polymer matrix composite (PMC) materials for secondary structural components, including aircraft aerodynamic fairings and interior automobile panels, due to their high strength and low weight when compared to metallic alloys. Only in recent years have they been utilized for primary structures, which stems from economic and societal concerns pressuring manufacturers to develop lighter fuel-efficient vehicles. Consequently, the long-term reliability of PMCs is now highly important, in particular for components with fatigue critical performance indicators such as automobile chassis side beams and aircraft wing spars. However, there exists a major scientific gap for addressing their performance under complex loading conditions.
Currently, design tools for assessing the long-term behaviour of PMC structures are unavailable, where instead designers use inaccurate empirical failure theories. The resulting drawback is twofold: (i) designs are conservative and suboptimal, and (ii) manufacturers require extensive and costly test programs to certify new products. Since the 10-year forecast for lightweight PMC usage in transportation vehicles is an expected growth by 50% to meet drastic fuel efficiency targets, it is imperative to address these major issues. The proposed research program aims to generate a knowledge base for lightweight PMCs, and develop design tools for their long-term assessment in order to minimize the weight of next-generation composite vehicles. Through an experimental test program the multiaxial cyclic behaviour and failure processes of PMCs will be characterized, enabling the development of a physically-based multi-scale simulation platform for assessing their performance under repeated loading conditions. The long-term objective is to efficiently design and certify next-generation lightweight composite vehicles by integrating the model into the product design process. This work will redefine the understanding and usage of lightweight PMC materials for fatigue critical applications in transportation vehicles.
This is the first study to consider multi-scale damage-based fatigue tools for the design of composite structures. With drastic fuel efficiency targets currently set by manufacturers, this ensures that the proposed research is timed correctly to develop the knowledge-base and enable technology required to better design next-generation lightweight composite vehicles, which are expected to be market-ready in the next decade. The innovative advancements made will increase the safety of vehicles and decrease development costs, allowing Canadian industry partners to stay competitive. New lightweight fuel-efficient vehicles will lead to reduced environmental impact, helping Canada gain global leadership in green technology, and reduce operating costs for end users of these products.
几十年来,运输车辆一直使用聚合物基复合材料 (PMC) 来制造二级结构部件,包括飞机空气动力学整流罩和汽车内饰板,因为与金属合金相比,聚合物基复合材料具有高强度和低重量的特点。直到最近几年,它们才被用于主要结构,这源于经济和社会问题迫使制造商开发更轻的节能车辆。因此,PMC 的长期可靠性现在非常重要,特别是对于具有疲劳关键性能指标的部件,例如汽车底盘侧梁和飞机翼梁。然而,在复杂负载条件下解决其性能方面存在重大科学差距。
目前,还没有用于评估 PMC 结构长期行为的设计工具,而是设计者使用不准确的经验失效理论。由此产生的缺点是双重的:(i) 设计保守且次优,(ii) 制造商需要广泛且昂贵的测试计划来认证新产品。由于运输车辆中轻量化 PMC 的使用量预计在 10 年内增长 50%,以满足严格的燃油效率目标,因此解决这些重大问题势在必行。拟议的研究计划旨在为轻量化 PMC 建立知识库,并开发用于长期评估的设计工具,以尽量减少下一代复合材料车辆的重量。通过实验测试程序,PMC 的多轴循环行为和失效过程将得到表征,从而能够开发基于物理的多尺度仿真平台,用于评估其在重复负载条件下的性能。长期目标是通过将模型集成到产品设计过程中来有效地设计和认证下一代轻型复合材料车辆。这项工作将重新定义轻质 PMC 材料在运输车辆疲劳关键应用中的理解和使用。
这是第一项考虑使用基于多尺度损伤的疲劳工具来设计复合材料结构的研究。由于制造商目前设定了严格的燃油效率目标,这确保了拟议的研究时机正确,以开发知识库并实现更好地设计下一代轻质复合材料车辆所需的技术,这些车辆预计将在未来上市十年。所取得的创新进步将提高车辆的安全性并降低开发成本,使加拿大行业合作伙伴保持竞争力。新型轻型节能车辆将减少对环境的影响,帮助加拿大获得绿色技术的全球领先地位,并降低这些产品最终用户的运营成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Montesano, Giovanni其他文献
Revisiting the Drasdo Model: Implications for Structure-Function Analysis of the Macular Region
- DOI:
10.1167/tvst.9.10.15 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:0
- 作者:
Montesano, Giovanni;Ometto, Giovanni;Crabb, David P. - 通讯作者:
Crabb, David P.
Policy-Driven, Multimodal Deep Learning for Predicting Visual Fields from the Optic Disc and OCT Imaging.
策略驱动的多模态深度学习,用于预测视盘和 OCT 成像的视野。
- DOI:
- 发表时间:
2022-07 - 期刊:
- 影响因子:13.7
- 作者:
Kihara, Yuka;Montesano, Giovanni;Chen, Andrew;Amerasinghe, Nishani;Dimitriou, Chrysostomos;Jacob, Aby;Chabi, Almira;Crabb, David P;Lee, Aaron Y - 通讯作者:
Lee, Aaron Y
UWHVF: A Real-World, Open Source Dataset of Perimetry Tests From the Humphrey Field Analyzer at the University of Washington.
UWHVF:来自华盛顿大学汉弗莱场分析仪的真实世界、开源视野测量测试数据集。
- DOI:
- 发表时间:
2022-01-03 - 期刊:
- 影响因子:3
- 作者:
Montesano, Giovanni;Chen, Andrew;Lu, Randy;Lee, Cecilia S;Lee, Aaron Y - 通讯作者:
Lee, Aaron Y
The effect of citicoline oral solution on quality of life in patients with glaucoma: the results of an international, multicenter, randomized, placebo-controlled cross-over trial
胞磷胆碱口服液对青光眼患者生活质量的影响:一项国际、多中心、随机、安慰剂对照交叉试验的结果
- DOI:
10.1007/s00417-022-05947-5 - 发表时间:
2023-06 - 期刊:
- 影响因子:0
- 作者:
Rossetti, Luca;Goni, Francisco;Montesano, Giovanni;Stalmans, Ingeborg;Topouzis, Fotis;Romano, Dario;Galantin, Eleonora;Delgado-Gonzales, Noemi;Giammaria, Sara;Coco, Giulia;Vandewalle, Evelien;Lemmens, Sophie;Giannoulis, Dimitrios;Pappas, Theofanis;Manni, Gianluca - 通讯作者:
Manni, Gianluca
Validating Trend-Based End Points for Neuroprotection Trials in Glaucoma.
- DOI:
10.1167/tvst.12.10.20 - 发表时间:
2023-10-03 - 期刊:
- 影响因子:3
- 作者:
Montesano, Giovanni;Garway-Heath, David F.;Rabiolo, Alessandro;De Moraes, Carlos Gustavo;Ometto, Giovanni;Crabb, David P. - 通讯作者:
Crabb, David P.
Montesano, Giovanni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Montesano, Giovanni', 18)}}的其他基金
Integrated forming and impact simulation models for rapid liquid composite molded lightweight structures
快速液态复合材料成型轻质结构的集成成型和冲击模拟模型
- 批准号:
RGPIN-2022-03724 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Integrated forming and impact simulation models for rapid liquid composite molded lightweight structures
快速液态复合材料成型轻质结构的集成成型和冲击模拟模型
- 批准号:
RGPIN-2022-03724 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Designing cost-effective high-performance residential wind turbines for remote Canadian communities
为加拿大偏远社区设计经济高效的高性能住宅风力涡轮机
- 批准号:
539274-2019 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Enabling the development of safe lightweight next-generation vehicles using high-performance composite materials
使用高性能复合材料开发安全、轻量的下一代汽车
- 批准号:
507776-2016 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Designing cost-effective high-performance residential wind turbines for remote Canadian communities
为加拿大偏远社区设计经济高效的高性能住宅风力涡轮机
- 批准号:
539274-2019 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Enabling the development of safe lightweight next-generation vehicles using high-performance composite materials
使用高性能复合材料开发安全、轻量的下一代汽车
- 批准号:
507776-2016 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
乳腺癌前哨淋巴结转移状态的预测:前期已筛选的分子标志物的验证及术中快速诊断方法的建立
- 批准号:81602322
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
- 批准号:
RGPIN-2016-03978 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual