A highly-compact optical amplifier for densely-integrated communications systems
用于密集集成通信系统的高度紧凑的光放大器
基本信息
- 批准号:555793-2020
- 负责人:
- 金额:$ 9.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Idea to Innovation
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to develop a new very-small-form-factor (VSFF) optical amplifier on a chip. Current VSFF amplifiers are limited to semiconductor optical amplifiers (SOAs), which use costly materials and are hampered by high noise and nonlinearities which induce signal crosstalk. The leading alternative technology, erbium-doped fiber amplifiers (EDFAs) offer low noise and high gain for high performance in optical systems.
However, the silica optical fiber used to build such amplifiers is on the order of meters long and cannot be bent too tightly when wrapped up, thereby imposing a limit on the overall size of the device. A potential alternative is the erbium-doped waveguide amplifier (EDWA), in which an erbium-doped waveguide is fabricated on a low-cost silicon substrate, allowing for large-scale production and orders of magnitude reduction in size because of the use of thin film materials with high refractive index and which allow for higher erbium dopant concentrations than silica. We have recently improved EDWAs using a novel platform based on hybrid erbium-doped tellurite glass and silicon nitride waveguides. Our platform removes past challenges with EDWAs which have prevented their commercialization, including reproducible fabrication methods using well-established silicon nitride technology, and high gain in a compact form factor enabled by the high refractive index doped tellurite glass. We have demonstrated optical gain of up to 5 dB using this platform, showing its viability. The remaining challenges to be addressed in this project include a) demonstrating higher optical gain of up to 20 dB in longer spiral waveguides; b) reducing the fiber-chip coupling loss to < 1 dB for optical pump and signal light to improve efficiency and noise performance; c) demonstrating a packaged component with optical pump and signal multiplexing on the same chip and input and output ports in a compact form factor. Such compact EDWAs will have wide-ranging applications in optical communications networks, data centers, high-performance computing, AI, space communications, and detection and ranging in self-driving vehicles.
我们建议在芯片上开发一种新型超小尺寸 (VSFF) 光放大器。当前的 VSFF 放大器仅限于半导体光放大器 (SOA),其使用昂贵的材料,并且受到高噪声和非线性的阻碍,从而引起信号串扰。掺铒光纤放大器 (EDFA) 是领先的替代技术,可为光学系统的高性能提供低噪声和高增益。
然而,用于构建此类放大器的石英光纤的长度为米量级,并且在包裹时不能太紧地弯曲,从而限制了设备的整体尺寸。一种潜在的替代方案是掺铒波导放大器(EDWA),其中掺铒波导是在低成本硅基板上制造的,由于使用了薄的硅基片,因此可以进行大规模生产并缩小尺寸数量级。具有高折射率的薄膜材料,并且允许比二氧化硅更高的铒掺杂剂浓度。我们最近使用基于混合掺铒亚碲酸盐玻璃和氮化硅波导的新型平台改进了 EDWA。我们的平台消除了 EDWA 过去阻碍其商业化的挑战,包括使用成熟的氮化硅技术的可重复制造方法,以及通过高折射率掺杂亚碲酸盐玻璃实现的紧凑外形的高增益。我们已经使用该平台展示了高达 5 dB 的光学增益,显示了其可行性。该项目需要解决的其余挑战包括:a) 在较长的螺旋波导中展示高达 20 dB 的更高光学增益; b) 将光泵和信号光的光纤芯片耦合损耗降低至< 1 dB,以提高效率和噪声性能; c) 演示在同一芯片上具有光泵和信号复用以及紧凑外形尺寸的输入和输出端口的封装组件。这种紧凑型 EDWA 将在光通信网络、数据中心、高性能计算、人工智能、空间通信以及自动驾驶车辆的检测和测距等领域具有广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley, Jonathan其他文献
Team performance indicators which differentiate between winning and losing in elite Gaelic football
- DOI:
10.1080/24748668.2019.1621674 - 发表时间:
2019-07-04 - 期刊:
- 影响因子:2.1
- 作者:
Gamble, Declan;Bradley, Jonathan;Moyna, Niall M. - 通讯作者:
Moyna, Niall M.
Differences in performance indicators between winners and losers in senior inter county hurling championship
- DOI:
10.1080/24748668.2021.1932147 - 发表时间:
2021-05-31 - 期刊:
- 影响因子:2.1
- 作者:
Brien, Paul;Martin, Denise;Bradley, Jonathan - 通讯作者:
Bradley, Jonathan
Aplysia cys-loop Glutamate-Gated Chloride Channels Reveal Convergent Evolution of Ligand Specificity
- DOI:
10.1007/s00239-009-9256-z - 发表时间:
2009-08-01 - 期刊:
- 影响因子:3.9
- 作者:
Kehoe, JacSue;Buldakova, Svetlana;Bradley, Jonathan - 通讯作者:
Bradley, Jonathan
Designed Synthesis of STA-30: A Small-Pore Zeolite Catalyst with Topology Type SWY
- DOI:
10.1021/acs.chemmater.1c01329 - 发表时间:
2021-06-18 - 期刊:
- 影响因子:8.6
- 作者:
Chitac, Ruxandra G.;Bradley, Jonathan;Wright, Paul A. - 通讯作者:
Wright, Paul A.
A gene-level methylome-wide association analysis identifies novel Alzheimer's disease genes
- DOI:
10.1093/bioinformatics/btab045 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:5.8
- 作者:
Wu, Chong;Bradley, Jonathan;Deng, Hong-Wen - 通讯作者:
Deng, Hong-Wen
Bradley, Jonathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley, Jonathan', 18)}}的其他基金
Integrated Rare Earth Lasers for Silicon Photonics
用于硅光子学的集成稀土激光器
- 批准号:
RGPIN-2017-06423 - 财政年份:2022
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
Integrated Rare Earth Lasers for Silicon Photonics
用于硅光子学的集成稀土激光器
- 批准号:
RGPIN-2017-06423 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
Compact and Eye-Safe Laser Source on a Silicon Chip for Light Detection and Ranging (LIDAR) Systems in Self-Driving Vehicles
用于自动驾驶车辆光探测和测距 (LIDAR) 系统的硅芯片上紧凑且人眼安全的激光源
- 批准号:
549663-2019 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Alliance Grants
A Canadian Open-Access Silicon Nitride Integrated Photonics Platform
加拿大开放式氮化硅集成光子学平台
- 批准号:
559531-2020 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Alliance Grants
Integrated Rare Earth Lasers for Silicon Photonics
用于硅光子学的集成稀土激光器
- 批准号:
RGPIN-2017-06423 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
Compact and Eye-Safe Laser Source on a Silicon Chip for Light Detection and Ranging (LIDAR) Systems in Self-Driving Vehicles
用于自动驾驶车辆光探测和测距 (LIDAR) 系统的硅芯片上紧凑且人眼安全的激光源
- 批准号:
549663-2019 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Alliance Grants
A Canadian Open-Access Silicon Nitride Integrated Photonics Platform
加拿大开放式氮化硅集成光子学平台
- 批准号:
559531-2020 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Alliance Grants
Very-small-form-factor on-chip er-yb optical amplifiers
超小型片上 er-yb 光放大器
- 批准号:
531364-2018 - 财政年份:2019
- 资助金额:
$ 9.11万 - 项目类别:
Collaborative Research and Development Grants
Amplified Silicon Nitride Waveguides for the Data Center
用于数据中心的放大氮化硅波导
- 批准号:
543779-2019 - 财政年份:2019
- 资助金额:
$ 9.11万 - 项目类别:
Engage Grants Program
Integrated Rare Earth Lasers for Silicon Photonics
用于硅光子学的集成稀土激光器
- 批准号:
RGPIN-2017-06423 - 财政年份:2019
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于非结构网格的高精度CESE格式
- 批准号:11901602
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
带有源项双曲守恒律系统的保平衡性质高精度杂交格式及其应用
- 批准号:11801383
- 批准年份:2018
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
间断Galerkin有限元方法在双曲守恒律和Vlasov系统中的算法设计及应用
- 批准号:11871428
- 批准年份:2018
- 资助金额:54.0 万元
- 项目类别:面上项目
可压缩多介质流体力学的广义黎曼问题数值方法
- 批准号:11771054
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
非线性双曲方程的高阶HWENO方法的研究和应用
- 批准号:11601364
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Compact Forward-Viewing Endoscopic Optical Coherence Tomography
紧凑型前视内窥镜光学相干断层扫描
- 批准号:
EP/X000125/1 - 财政年份:2023
- 资助金额:
$ 9.11万 - 项目类别:
Research Grant
I-Corps: A Compact Silicon Chip for Laser Injection Locking and Optical Parametric Oscillation
I-Corps:用于激光注入锁定和光学参量振荡的紧凑型硅芯片
- 批准号:
2322982 - 财政年份:2023
- 资助金额:
$ 9.11万 - 项目类别:
Standard Grant
Realization of a compact 2D magneto-optical trap for rubidium
紧凑型铷二维磁光陷阱的实现
- 批准号:
571804-2022 - 财政年份:2022
- 资助金额:
$ 9.11万 - 项目类别:
University Undergraduate Student Research Awards
SIGHT: A compact adaptive optics technology demonstrator for all-sky panchromatic optical/infrared spectroscopy
SIGHT:用于全天空全色光学/红外光谱的紧凑型自适应光学技术演示器
- 批准号:
2010005 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Standard Grant
Optimization of Clear Optically Matched Panoramic Access Channel Technique (COMPACT) for large-scale deep-brain neurophotonic interface
大规模深脑神经光子接口的清晰光学匹配全景访问通道技术(COMPACT)的优化
- 批准号:
10267684 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别: