Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments

城市环境中威胁检测的最佳分层资源管理和数据处理

基本信息

  • 批准号:
    538404-2018
  • 负责人:
  • 金额:
    $ 6.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Canada must be able to secure and protect the people and infrastructure in its urban environments. To do so, threats such as terrorist events and improvised explosive devices, in urban environments need to be identified early not only to safeguard the citizens and the infrastructure, but also to maintain the citizens' confidence in law and order and their trust in the government. In the case of threats that are mobile, it is also essential to accurately track and predict their kinematic states as they evolve over space and time. To detect such stationary or kinematic threats, sensors or signal sources such as cameras, radars, lidars, communication devices, radio and television stations, and cell phone towers can be used in an urban environment. In some urban scenarios, there might be an abundance of sensors due to ubiquitous cameras and cell phones, which could overload the communication and computational resources, or a dearth of accessible sensors due to the presence of buildings that block signal propagation, which would adversely affect the quality of threat detection and tracking. In either case, it is essential to strike a balance between (i) sensing, communication and computational resource utilization and (ii) the desired timeliness and accuracy of threat detection and tracking. This need to balance motivates the proposed research work to develop algorithms for optimal management of sensor, communication and computational resources as well as algorithms for threat detection and object tracking in urban environments using sensors and processors mounted on stationary or moving platforms. The proposed work will train a number of highly qualified personnel (HQP) in sensor and data processing with application to safety and security. In addition, the trained HQP can be employed and the resulting algorithms deployed in other fields such as autonomous vehicles, intelligent transportation and smart cities, which are of importance to maintain Canada's edge in today's high-tech world.
加拿大必须能够在其城市环境中保护和保护人民和基础设施。为此,在城市环境中,诸如恐怖事件和简易爆炸装置之类的威胁不仅需要尽早确定以维护公民和基础设施,还需要维持公民对法律和秩序的信心以及他们对政府的信任。对于移动的威胁,随着时间和时间的发展,准确跟踪和预测其运动学状态也是必不可少的。为了检测这种固定或运动学威胁,传感器或信号源,例如相机,雷达,激光雷达,通信设备,广播和电视台以及手机塔可以在城市环境中使用。 在某些城市场景中,由于无处不在的摄像机和手机,可能会有大量的传感器,这可能会超载通信和计算资源,或者由于存在阻碍信号传播的建筑物而缺乏可访问的传感器,这会对威胁检测和跟踪的质量产生不利影响。无论哪种情况,都必须在(i)传感,通信和计算资源利用以及(ii)威胁检测和跟踪的所需及时性和准确性之间取得平衡。这种需要平衡的需要激发拟议的研究工作,以开发算法,以最佳管理传感器,通信和计算资源,以及使用安装在固定或移动平台上的传感器和处理器在城市环境中进行威胁检测和对象跟踪的算法。拟议的工作将在传感器和数据处理中培训许多高素质的人员(HQP),并应​​用于安全和保障。此外,可以使用训练有素的HQP,并在其他领域(例如自动驾驶汽车,智能运输和智能城市)中部署的算法,这对于在当今高科技世界中保持加拿大的优势非常重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kirubarajan, Thia其他文献

Multiple Model Multi-Bernoulli Filters for Manoeuvering Targets
Seamless group target tracking using random finite sets
使用随机有限集进行无缝群组目标跟踪
  • DOI:
    10.1016/j.sigpro.2020.107683
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Li, Zhejun;Hu, Weidong;Kirubarajan, Thia
  • 通讯作者:
    Kirubarajan, Thia
Application of an Efficient Graph-Based Partitioning Algorithm for Extended Target Tracking Using GM-PHD Filter
Arbitrary Microphone Array Optimization Method Based on TDOA for Specific Localization Scenarios
基于TDOA的特定定位场景任意麦克风阵列优化方法
  • DOI:
    10.3390/s19194326
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Liu, Haitao;Kirubarajan, Thia;Xiao, Qian
  • 通讯作者:
    Xiao, Qian
Survey: State of the art in NDE data fusion techniques

Kirubarajan, Thia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kirubarajan, Thia', 18)}}的其他基金

Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    RGPIN-2017-05365
  • 财政年份:
    2021
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Discovery Grants Program - Individual
Airborne Tracking of Small Ground and Maritime Targets Under Realistic Conditions
现实条件下空中跟踪小型地面和海上目标
  • 批准号:
    535810-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Collaborative Research and Development Grants
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
  • 批准号:
    538404-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Collaborative Research and Development Grants
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
  • 批准号:
    501206-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
NSERC/General Dynamics Mission Systems-Canada Industrial Research Chair in Target Tracking and Information Fusion
NSERC/通用动力任务系统-加拿大目标跟踪和信息融合工业研究主席
  • 批准号:
    521710-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Industrial Research Chairs
Software-Controlled Active Electronically Scanned Array Radar for Airbone Ground Surveillance
用于机载地面监视的软件控制有源电子扫描阵列雷达
  • 批准号:
    500634-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    RGPIN-2017-05365
  • 财政年份:
    2020
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Discovery Grants Program - Individual
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    507969-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    RGPIN-2017-05365
  • 财政年份:
    2019
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Discovery Grants Program - Individual
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    DGDND-2017-00082
  • 财政年份:
    2019
  • 资助金额:
    $ 6.99万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement

相似国自然基金

面向规模化异质弹性资源接入的配电系统可行域表征及分层协同优化运行研究
  • 批准号:
    52207091
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向规模化异质弹性资源接入的配电系统可行域表征及分层协同优化运行研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向6G宽带实时交互的分层多目标动态资源优化
  • 批准号:
    62271150
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向延时敏感应用的分层异构边缘计算网络资源调度方案研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
群组车辆协作寻路机制与道路资源竞争的研究
  • 批准号:
    61902051
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
  • 批准号:
    538404-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Collaborative Research and Development Grants
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
  • 批准号:
    538404-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Collaborative Research and Development Grants
Radio Resource Management in 5G and Beyond Networks: A Layered In-network Learning Approach
5G 及其他网络中的无线电资源管理:分层网络内学习方法
  • 批准号:
    20K11764
  • 财政年份:
    2020
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
  • 批准号:
    538404-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Collaborative Research and Development Grants
Multi-layered policy formation of the sustainable resource economy in environmental law
环境法中可持续资源经济的多层次政策形成
  • 批准号:
    17K03375
  • 财政年份:
    2017
  • 资助金额:
    $ 6.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了