Multi-level adaptive systems and algorithms for agile and opportunistic sensing

用于敏捷和机会感知的多级自适应系统和算法

基本信息

  • 批准号:
    501206-2016
  • 负责人:
  • 金额:
    $ 7.29万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Sensing or inference using data from heterogeneous and geographically-distributed sensors has many civilian as well as defense applications. For example, in defense-oriented surveillance systems, multiple unidentified targets are tracked using noisy data from sensors such as radar, sonar, electro-optical or infrared cameras to identify their locations and courses and classify their types. In civilian urban-monitoring or smart-city systems, multiple cameras are used to monitor traffic and to ensure the safety and security of people in an area. Advances in sensor technologies have resulted in affordable high-quality sensors (e.g., video cameras, acoustic devices, short-range radars) that are ubiquitous around us. Also, unlike before when sensors were usually deployed by those interested in surveillance, now data from ad-hoc sensors-of-opportunity are also available. Admittedly, computing technology has also improved along with advances in sensor technology. However, in order to achieve real-time sensing capability, it is necessary to develop efficient algorithms to process the vast amounts of data from a multitude of sensors (e.g., 4K video data at high framerates, sonar data with extremely high false alarm rates) with a time-varying sensor architecture or configuration. That is, we need algorithms that can adapt to ever-changing target characteristics and sensor configurations at design-time as well as at run-time. We propose to develop multi-level (e.g., at sensor, platform, system and system-of-systems levels) adaptation algorithms to process data from a time-varying set of sensors mounted on platforms that may evolve over time with the objective of accurate tracking, classification and situational awareness. In addition to training highly qualified personnel and advancing the state-of-the-art in sensing technology, the proposed work will have significant economic and societal impacts. The algorithms to be developed in this project can be applied, with some modifications, to defense as well as civilian sensing systems.
使用来自异构和地理分布传感器的数据进行传感或推理具有许多民用和国防应用。例如,在面向防御的监视系统中,使用来自雷达、声纳、光电或红外摄像机等传感器的噪声数据来跟踪多个不明目标,以识别其位置和路线并对其类型进行分类。在民用城市监控或智慧城市系统中,使用多个摄像头来监控交通并确保某个区域内人员的安全。传感器技术的进步带来了我们周围无处不在的价格实惠的高质量传感器(例如摄像机、声学设备、短程雷达)。此外,与以前通常由对监视感兴趣的人部署传感器不同,现在也可以获得来自临时机会传感器的数据。诚然,计算技术也随着传感器技术的进步而进步。然而,为了实现实时传感能力,需要开发高效的算法来处理来自多个传感器的大量数据(例如高帧率的4K视频数据、误报率极高的声纳数据)具有时变传感器架构或配置。也就是说,我们需要能够在设计时和运行时适应不断变化的目标特征和传感器配置的算法。我们建议开发多级(例如,在传感器、平台、系统和系统级)自适应算法,以处理来自安装在平台上的一组随时间变化的传感器的数据,这些传感器可能会随着时间的推移而演变,目的是准确地跟踪、分类和态势感知。除了培训高素质人才和推进最先进的传感技术之外, 拟议的工作将产生重大的经济和社会影响。该项目中开发的算法经过一些修改后可以应用于国防和民用传感系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kirubarajan, Thia其他文献

Multiple Model Multi-Bernoulli Filters for Manoeuvering Targets
Seamless group target tracking using random finite sets
使用随机有限集进行无缝群组目标跟踪
  • DOI:
    10.1016/j.sigpro.2020.107683
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Li, Zhejun;Hu, Weidong;Kirubarajan, Thia
  • 通讯作者:
    Kirubarajan, Thia
Arbitrary Microphone Array Optimization Method Based on TDOA for Specific Localization Scenarios
基于TDOA的特定定位场景任意麦克风阵列优化方法
  • DOI:
    10.3390/s19194326
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Liu, Haitao;Kirubarajan, Thia;Xiao, Qian
  • 通讯作者:
    Xiao, Qian
Application of an Efficient Graph-Based Partitioning Algorithm for Extended Target Tracking Using GM-PHD Filter
THE SMOOTH PARTICLE VARIABLE STRUCTURE FILTER

Kirubarajan, Thia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kirubarajan, Thia', 18)}}的其他基金

Airborne Tracking of Small Ground and Maritime Targets Under Realistic Conditions
现实条件下空中跟踪小型地面和海上目标
  • 批准号:
    535810-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Collaborative Research and Development Grants
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    RGPIN-2017-05365
  • 财政年份:
    2021
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
  • 批准号:
    538404-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Collaborative Research and Development Grants
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
  • 批准号:
    538404-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Collaborative Research and Development Grants
NSERC/General Dynamics Mission Systems-Canada Industrial Research Chair in Target Tracking and Information Fusion
NSERC/通用动力任务系统-加拿大目标跟踪和信息融合工业研究主席
  • 批准号:
    521710-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Industrial Research Chairs
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    RGPIN-2017-05365
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Software-Controlled Active Electronically Scanned Array Radar for Airbone Ground Surveillance
用于机载地面监视的软件控制有源电子扫描阵列雷达
  • 批准号:
    500634-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    507969-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
  • 批准号:
    DGDND-2017-00082
  • 财政年份:
    2019
  • 资助金额:
    $ 7.29万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
  • 批准号:
    538404-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

钙稳态失衡引起蛋鸡等级前卵泡闭锁及其机制的研究
  • 批准号:
    32372953
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
食用真菌细胞核等级秩序及其分子调控机制的研究
  • 批准号:
    32372789
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高速公路路基翻浆冒泥发生机理及等级评价方法研究
  • 批准号:
    52308438
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单色光通过m6A修饰circNTRK2调控miR-205b/StAR轴影响鸽等级卵泡选择的机制研究
  • 批准号:
    32372875
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新型实用化量子密码协议的高安全等级理论分析
  • 批准号:
    12374473
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
  • 批准号:
    RGPIN-2019-06773
  • 财政年份:
    2022
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
  • 批准号:
    RGPIN-2019-06773
  • 财政年份:
    2021
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
  • 批准号:
    RGPIN-2019-06773
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
  • 批准号:
    RGPIN-2019-06773
  • 财政年份:
    2019
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Multi-level Multi-phenomena Appearance Models
自适应多级多现象外观模型
  • 批准号:
    RGPIN-2015-04378
  • 财政年份:
    2019
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了