Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
基本信息
- 批准号:501206-2016
- 负责人:
- 金额:$ 7.29万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Department of National Defence / NSERC Research Partnership
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sensing or inference using data from heterogeneous and geographically-distributed sensors has many civilian as well as defense applications. For example, in defense-oriented surveillance systems, multiple unidentified targets are tracked using noisy data from sensors such as radar, sonar, electro-optical or infrared cameras to identify their locations and courses and classify their types. In civilian urban-monitoring or smart-city systems, multiple cameras are used to monitor traffic and to ensure the safety and security of people in an area. Advances in sensor technologies have resulted in affordable high-quality sensors (e.g., video cameras, acoustic devices, short-range radars) that are ubiquitous around us. Also, unlike before when sensors were usually deployed by those interested in surveillance, now data from ad-hoc sensors-of-opportunity are also available. Admittedly, computing technology has also improved along with advances in sensor technology. However, in order to achieve real-time sensing capability, it is necessary to develop efficient algorithms to process the vast amounts of data from a multitude of sensors (e.g., 4K video data at high framerates, sonar data with extremely high false alarm rates) with a time-varying sensor architecture or configuration. That is, we need algorithms that can adapt to ever-changing target characteristics and sensor configurations at design-time as well as at run-time. We propose to develop multi-level (e.g., at sensor, platform, system and system-of-systems levels) adaptation algorithms to process data from a time-varying set of sensors mounted on platforms that may evolve over time with the objective of accurate tracking, classification and situational awareness. In addition to training highly qualified personnel and advancing the state-of-the-art in sensing technology, the
proposed work will have significant economic and societal impacts. The algorithms to be developed in this project can be applied, with some modifications, to defense as well as civilian sensing systems.
使用来自异质和地理分布的传感器的数据进行传感或推理具有许多平民和国防应用。例如,在面向防御的监视系统中,使用来自雷达,声纳,电子光学或红外摄像机等传感器的嘈杂数据来跟踪多个身份不明的目标,以识别其位置和课程并对其类型进行分类。在平民城市监测或智能城市系统中,使用多个摄像机来监视流量并确保该地区人们的安全和保障。传感器技术的进步导致我们周围无处不在的高质量传感器(例如,摄像机,声学设备,短距离雷达)。同样,与通常受到监视感兴趣的人部署传感器不同,现在也可以使用来自临时传感器的数据。诚然,随着传感器技术的进步,计算技术也有所提高。但是,为了获得实时传感能力,有必要开发有效的算法来处理来自众多传感器的大量数据(例如,高帧速率的4K视频数据,具有极高虚假警报速率的声纳数据,具有极高的错误警报率),并具有时间变化的传感器架构或配置。也就是说,我们需要算法,这些算法可以适应设计时间和运行时的不断变化的目标特性和传感器配置。我们建议开发多层次(例如,在传感器,平台,系统和系统级别)适应算法,以从安装在平台上的时变传感器集来处理数据,这些传感器可能会随着时间的推移而发展,以实现准确的跟踪,分类,分类和情境差异的目标。除了培训高素质的人员并促进传感技术的最先进之外,
拟议的工作将产生重大的经济和社会影响。可以在该项目中开发的算法,并进行一些修改,以防御和平民传感系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirubarajan, Thia其他文献
Multiple Model Multi-Bernoulli Filters for Manoeuvering Targets
- DOI:
10.1109/taes.2013.6621845 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:4.4
- 作者:
Dunne, Darcy;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Seamless group target tracking using random finite sets
使用随机有限集进行无缝群组目标跟踪
- DOI:
10.1016/j.sigpro.2020.107683 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:4.4
- 作者:
Li, Zhejun;Hu, Weidong;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Arbitrary Microphone Array Optimization Method Based on TDOA for Specific Localization Scenarios
基于TDOA的特定定位场景任意麦克风阵列优化方法
- DOI:
10.3390/s19194326 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:3.9
- 作者:
Liu, Haitao;Kirubarajan, Thia;Xiao, Qian - 通讯作者:
Xiao, Qian
Application of an Efficient Graph-Based Partitioning Algorithm for Extended Target Tracking Using GM-PHD Filter
- DOI:
10.1109/taes.2020.2990803 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:4.4
- 作者:
Qin, Zheng;Kirubarajan, Thia;Liang, Yangang - 通讯作者:
Liang, Yangang
THE SMOOTH PARTICLE VARIABLE STRUCTURE FILTER
- DOI:
10.1139/tcsme-2012-0013 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:0.9
- 作者:
Gadsden, S. Andrew;Habibi, Saeid R.;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Kirubarajan, Thia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirubarajan, Thia', 18)}}的其他基金
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Airborne Tracking of Small Ground and Maritime Targets Under Realistic Conditions
现实条件下空中跟踪小型地面和海上目标
- 批准号:
535810-2018 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Collaborative Research and Development Grants
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
- 批准号:
538404-2018 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Collaborative Research and Development Grants
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
- 批准号:
538404-2018 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Collaborative Research and Development Grants
NSERC/General Dynamics Mission Systems-Canada Industrial Research Chair in Target Tracking and Information Fusion
NSERC/通用动力任务系统-加拿大目标跟踪和信息融合工业研究主席
- 批准号:
521710-2016 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Industrial Research Chairs
Software-Controlled Active Electronically Scanned Array Radar for Airbone Ground Surveillance
用于机载地面监视的软件控制有源电子扫描阵列雷达
- 批准号:
500634-2016 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
507969-2017 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
DGDND-2017-00082 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
DND/NSERC Discovery Grant Supplement
相似国自然基金
粒子level set方法的改进与空间自适应波浪模型并行化研究
- 批准号:52171245
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于非线性等级模型的声学回声自适应消除
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
基于代理模型和多项式混沌展开的飞行器不确定性分析理论与方法的研究
- 批准号:51105034
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于动态界面追踪技术的拓扑自适应刀路生成方法研究
- 批准号:51105335
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
多介质流动问题的界面处理方法及自适应网格技术研究
- 批准号:10601023
- 批准年份:2006
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
- 批准号:
RGPIN-2019-06773 - 财政年份:2022
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
- 批准号:
RGPIN-2019-06773 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
- 批准号:
RGPIN-2019-06773 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
- 批准号:
RGPIN-2019-06773 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Multi-level Multi-phenomena Appearance Models
自适应多级多现象外观模型
- 批准号:
RGPIN-2015-04378 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual