Transient Kerr Microscopy System for Studying Spin Transport in Semiconducting Hybrid Perovskite Quantum Materials
用于研究半导体混合钙钛矿量子材料中自旋输运的瞬态克尔显微镜系统
基本信息
- 批准号:RTI-2020-00499
- 负责人:
- 金额:$ 10.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Research Tools and Instruments
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Semiconductors fueled the first quantum revolution, representing the advent of technologies based on controlling the flow of electrons and their intrinsic charge (integrated circuits, lasers, optical displays). But electrons also possess a magnetic moment, called spin, that offers an additional means to store and manipulate information. The exploitation of the spin property of the electron is poised to lead a host of new technologies (termed Quantum 2.0), including ultra-low power computer chips, novel high-bandwidth telecommunication technologies, and even quantum computers with applications in the areas of communications, security and medicine among others. While dramatic progress has been made over the past decade in the creation of proof-of-principle schemes for controlling spin, these have largely been based on the same semiconductors used for the first quantum revolution (e.g. GaAs and Si). While such materials were a natural choice due to the availability of established tools for materials growth and device fabrication, a key mechanism used to control the electron spin (the spin-orbit interaction) is weak in these materials, limiting their potential for practical technologies. ******Hybrid organic-inorganic perovskite semiconductors are expected to possess extremely strong spin-orbit coupling and offer an unprecedented ability to tune the spin properties through materials engineering, making them a potential enabling material for Quantum 2.0. These funds will support the construction of a time-resolved Kerr Rotation Microscopy system that will enable a comprehensive materials engineering research program to advance hybrid perovskite semiconductors for quantum technology development. This new equipment will enable the first measurements of spin transport in perovskite materials and devices, allowing the users of this equipment to: (i) develop an understanding of the underlying spin-orbit properties; (ii) to engineer these properties through materials composition; and (iii) to demonstrate proof-of-principle quantum devices, thereby unlocking the potential of hybrid perovskites for quantum technology development. The materials science research program enabled by this infrastructure will represent an excellent training environment for the next generation of scientists and researchers, and will foster innovation in photonic and quantum technologies for the benefit of the Canadian economy.**
半导体推动了第一次量子革命,代表了基于控制电子流动及其固有电荷的技术(集成电路、激光器、光学显示器)的出现。但电子还具有磁矩,称为自旋,它提供了另一种存储和操纵信息的方法。电子自旋特性的利用有望引领一系列新技术(称为量子2.0),包括超低功耗计算机芯片、新颖的高带宽电信技术,甚至应用于通信领域的量子计算机、安全和医学等。尽管过去十年在控制自旋的原理验证方案的创建方面取得了巨大进展,但这些方案很大程度上基于用于第一次量子革命的相同半导体(例如砷化镓和硅)。虽然由于材料生长和器件制造的现有工具的可用性,这些材料是自然的选择,但这些材料中用于控制电子自旋(自旋轨道相互作用)的关键机制很弱,限制了它们的实用技术潜力。 ******混合有机-无机钙钛矿半导体预计将具有极强的自旋轨道耦合,并提供前所未有的通过材料工程调节自旋特性的能力,使其成为量子2.0的潜在支持材料。 这些资金将支持时间分辨克尔旋转显微镜系统的建设,该系统将实现全面的材料工程研究计划,以推进混合钙钛矿半导体的量子技术开发。 这种新设备将首次测量钙钛矿材料和器件中的自旋输运,使该设备的用户能够:(i)了解潜在的自旋轨道特性; (ii) 通过材料成分来设计这些特性; (iii) 展示原理验证量子器件,从而释放混合钙钛矿在量子技术开发中的潜力。 该基础设施支持的材料科学研究计划将为下一代科学家和研究人员提供良好的培训环境,并将促进光子和量子技术的创新,造福加拿大经济。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hall, Kimberley其他文献
Hall, Kimberley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hall, Kimberley', 18)}}的其他基金
Ultrafast spectroscopy of semiconductor materials for the advancement of quantum technologies
半导体材料超快光谱促进量子技术的进步
- 批准号:
RGPIN-2020-06322 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast spectroscopy of semiconductor materials for the advancement of quantum technologies
半导体材料超快光谱促进量子技术的进步
- 批准号:
RGPIN-2020-06322 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast spectroscopy of semiconductor materials for the advancement of quantum technologies
半导体材料超快光谱促进量子技术的进步
- 批准号:
RGPIN-2020-06322 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Optical Studies of Semiconductor Materials for Spintronics and Quantum Computing
用于自旋电子学和量子计算的半导体材料的超快光学研究
- 批准号:
300567-2012 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
NanoAtlantic Academia-Industry Workshop
纳米大西洋学术界-工业研讨会
- 批准号:
533944-2018 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Connect Grants Level 2
Ultrafast Optical Studies of Semiconductor Materials for Spintronics and Quantum Computing
用于自旋电子学和量子计算的半导体材料的超快光学研究
- 批准号:
300567-2012 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Optical Studies of Semiconductor Materials for Spintronics and Quantum Computing
用于自旋电子学和量子计算的半导体材料的超快光学研究
- 批准号:
300567-2012 - 财政年份:2017
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Optical Studies of Semiconductor Materials for Spintronics and Quantum Computing
用于自旋电子学和量子计算的半导体材料的超快光学研究
- 批准号:
300567-2012 - 财政年份:2016
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
微腔耗散克尔孤子时间抖动抑制技术研究
- 批准号:62375043
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
涡旋光波导耦合结构的克尔效应及其在全光开关中的应用
- 批准号:62305057
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
标量-张量引力理论下Kerr黑洞自发标量化现象的研究
- 批准号:12365009
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于克尔透镜锁模碟片涡旋振荡器的高功率飞秒涡旋光的产生与调控
- 批准号:62335009
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
基于力学克尔效应的大带宽、低功耗片上集成光学非互易器件研究
- 批准号:62305316
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Kerr microscopy with machine learning domain detection for in-situ magnetic materials analysis (MaKerr)
具有机器学习域检测功能的克尔显微镜用于原位磁性材料分析 (MaKerr)
- 批准号:
413993866 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Major Instrumentation Initiatives
Development of Ultimate Low-Noise Magnetic Field Sensors Using Novel Sensing Layer in Magnetic Tunnel Junctions for Sensing-Driven Society
在磁隧道结中使用新型传感层开发终极低噪声磁场传感器,以实现传感驱动的社会
- 批准号:
19K15429 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Imaging of electron spin polarization in quantum Hall states investigated by Kerr rotation microscopy
通过克尔旋转显微镜研究量子霍尔态中电子自旋极化的成像
- 批准号:
21540315 - 财政年份:2009
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surface chemical control and characterization of magnetism of nano-scale thin films, wires and clusters
纳米级薄膜、线材和团簇的表面化学控制和磁性表征
- 批准号:
15087211 - 财政年份:2003
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Stroboscopic domain imaging by Kerr microscopy
通过克尔显微镜进行频闪域成像
- 批准号:
5372920 - 财政年份:2002
- 资助金额:
$ 10.93万 - 项目类别:
Priority Programmes