Facility for Real Time Imaging of 3D Bioprinted Neural Tissues

3D 生物打印神经组织实时成像设施

基本信息

  • 批准号:
    RTI-2020-00147
  • 负责人:
  • 金额:
    $ 10.93万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The use of 3D bioprinting has become an increasing popular strategy for engineering tissues as it can automate this process while enhancing reproducibility of the printed tissues, saving time and money. This process takes on specifications contained in a digital computer aided design (CAD) file and generates a living structure by printing cells encapsulated in specially formulated bioinks. 3D bioprinting serves as a powerful tool for engineering tissues from stem cells in a rapid and reproducible manner compared to traditional techniques. The Willerth lab uses 3D bioprinting to generate neural tissues from human induced pluripotent stem cells combined with their novel neurobioink as a tool for drug screening. In particular, her lab is an international leader in this field as they are one of the few institutions to possess an Aspect Biosystems RX1 bioprinting system that features Lab-on-a-Printer (LOP) technology. This system offers a novel way to automate the process of engineering physiologically relevant neural tissues that have complicated structures and several types of cells. The complex nature of brain tissue requires precise deposition of multiple cell types in defined structures only achievable with Aspect's RX1 bioprinting platform and its unique, patented LOP technology. The Willerth lab was the first group to publish how to engineer living tissues using this unique technology and they continue to pursue ground breaking research in this area. This proposal will enable the acquisition of real time cell imaging system to be used for monitoring the behavior of cells inside of 3D bioprinted tissues. Our previous instrument broke and thus there is a clear and urgent need to replace our live cell imaging system. Acquiring this equipment will enable the Willerth lab to better characterize their tissue cultures by monitoring their properties in real time and to train highly qualified personnel in this cutting edge bioprinting technology. In particular, this system and its associated software enable the characterization of the physical, chemical, and electrical properties of the 3D bioprinted tissues derived from stem cells. Her laboratory provides a high quality training experience as Dr. Willerth has a strong track record of training diverse HQP as she was awarded the 2018 REACH Award for Excellence in Undergraduate Research-inspired Teaching. Additionally, she currently holds two international exchange grants for promoting HQP training in the area of 3D bioprinting based on her unique facility at the University of Victoria. This equipment will enable training of diverse students in cutting edge technology. Her trainees will also have access to additional resources, including the Stem Cell Network, the International Collaboration on Repair Discoveries, and the B.C. Regenerative Medicine Network.
3D 生物打印的使用已成为一种越来越流行的组织工程策略,因为它可以使该过程自动化,同时提高打印组织的可重复性,从而节省时间和金钱。该过程采用数字计算机辅助设计(CAD)文件中包含的规格,并通过打印封装在特殊配方的生物墨水中的细胞来生成活体结构。与传统技术相比,3D 生物打印是一种强大的工具,能够以快速且可重复的方式利用干细胞工程组织。 Willerth 实验室使用 3D 生物打印技术,从人类诱导多能干细胞中生成神经组织,并结合其新型神经生物墨水作为药物筛选工具。特别是,她的实验室是该领域的国际领先者,因为他们是少数拥有采用打印机实验室 (LOP) 技术的 Aspect Biosystems RX1 生物打印系统的机构之一。该系统提供了一种新的方法来自动化设计具有复杂结构和多种细胞类型的生理相关神经组织的过程。脑组织的复杂性需要在确定的结构中精确沉积多种细胞类型,只有通过 Aspect 的 RX1 生物打印平台及其独特的专利 LOP 技术才能实现。 Willerth 实验室是第一个发表如何使用这种独特技术设计活体组织的小组,并且他们将继续在该领域进行突破性研究。该提案将能够采集实时细胞成像系统,用于监测 3D 生物打印组织内部细胞的行为。我们之前的仪器坏了,因此显然迫切需要更换我们的活细胞成像系统。购买该设备将使 Willerth 实验室能够通过实时监控其组织培养物的特性来更好地表征其组织培养物,并培训这种尖端生物打印技术的高素质人员。特别是,该系统及其相关软件能够表征源自干细胞的 3D 生物打印组织的物理、化学和电特性。 Willerth 博士在培训多元化 HQP 方面拥有良好的记录,她的实验室提供了高质量的培训体验,并荣获 2018 年 REACH 本科生研究启发教学卓越奖。此外,她目前还拥有两项国际交流赠款,用于基于其在维多利亚大学的独特设施促进 3D 生物打印领域的 HQP 培训。该设备将使不同的学生能够接受尖端技术方面的培训。她的学员还将获得其他资源,包括干细胞网络、修复发现国际合作组织和 BC 省。再生医学网。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Willerth, Stephanie其他文献

Guggulsterone-releasing microspheres direct the differentiation of human induced pluripotent stem cells into neural phenotypes
  • DOI:
    10.1088/1748-605x/aaaa77
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Agbay, Andrew;De La Vega, Laura;Willerth, Stephanie
  • 通讯作者:
    Willerth, Stephanie

Willerth, Stephanie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Willerth, Stephanie', 18)}}的其他基金

Biomedical Engineering
生物医学工程
  • 批准号:
    CRC-2017-00338
  • 财政年份:
    2022
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Canada Research Chairs
Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2022
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Development of HeartPrint Bioink
HeartPrint Bioink 的开发
  • 批准号:
    571266-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Idea to Innovation
Biomedical Engineering
生物医学工程
  • 批准号:
    CRC-2017-00338
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Canada Research Chairs
Biomedical Engineering
生物医学工程
  • 批准号:
    CRC-2017-00338
  • 财政年份:
    2020
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Canada Research Chairs
Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2020
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Validation of functionalized transcription factors as a novel cell culture supplements
功能化转录因子作为新型细胞培养补充剂的验证
  • 批准号:
    508698-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Collaborative Research and Development Grants
Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2019
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Biomedical Engineering
生物医学工程
  • 批准号:
    CRC-2017-00338
  • 财政年份:
    2019
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
  • 批准号:
    31501461
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
多维马氏体的数学建模及其高精度数值模拟方法
  • 批准号:
    11171218
  • 批准年份:
    2011
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
  • 批准号:
    31171793
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
  • 批准号:
    81172902
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Acquisition of a Zeiss LSM 900 confocal microscope with Airyscan 2 for an Imaging and Microscopy Core
购买配备 Airyscan 2 的 Zeiss LSM 900 共焦显微镜作为成像和显微镜核心
  • 批准号:
    10632858
  • 财政年份:
    2023
  • 资助金额:
    $ 10.93万
  • 项目类别:
Biocontainment Research Support Service(s) Core
生物防护研究支持服务核心
  • 批准号:
    10793830
  • 财政年份:
    2023
  • 资助金额:
    $ 10.93万
  • 项目类别:
Cell Biology Core
细胞生物学核心
  • 批准号:
    10586202
  • 财政年份:
    2023
  • 资助金额:
    $ 10.93万
  • 项目类别:
Convenient rapid and portable tool for the detection of ribonucleases
用于检测核糖核酸酶的方便、快速、便携的工具
  • 批准号:
    10760552
  • 财政年份:
    2023
  • 资助金额:
    $ 10.93万
  • 项目类别:
Untethered high channel count electrophysiology for freely-moving animals
适用于自由活动动物的不受束缚的高通道数电生理学
  • 批准号:
    10761109
  • 财政年份:
    2023
  • 资助金额:
    $ 10.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了