Power Cycle Modulation Control for High Efficiency GaN Switch Based Power Supplies
基于高效 GaN 开关的电源的功率循环调制控制
基本信息
- 批准号:RGPIN-2019-06635
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is very important to reduce power loss and size of the switching power supplies used in new and emerging applications, such as: in Power Delivery (PD) adapters for cell phones, tablets, and notebook computers; and in Electric Vehicles (EV). ******MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) switches are exclusively used in today's power supplies. MOSFET technology has been developed for over 30 years and its performance has reached its theoretical limit. With MOSFET, the optimal switching frequency is limited to 200 500 kHz for low power application (such as 65W) and to 50 100 kHz for high power application (such as 1,000 5,000W output power).******GaN (Gallium Nitride) switches have been developed in recent years as a next generation switching device with the promise of replacing MOSFETs. GaN switches have much lower conduction loss and lower switching loss. My research has concluded that a GaN switch can achieve the most performance improvement over MOSFET when it is used in resonant converters. However, to realize the potential of this new technology, we need to solve one major limitation of resonant converters: narrow voltage gain range. When the input voltage and output voltage variation range is large, such as larger than 2:1, the performance of current resonant converters is significantly compromised.******The proposed research program will develop a breakthrough power supply control technology, called Power Cycle Modulation (PCM), using GaN switches and resonant converters, to: (1) significantly increase the efficiency and power density of switching power supplies, by (2) achieving peak efficiency operation over very wide input and output voltage variation range, such as 10:1, so as to (3) produce power supply designs with unprecedented high efficiency and high power density of switching power supplies.******The revolutionary PCM technology developed in this research program will reduce: (1) the size of PD adapter for cell phones, tablet, and notebook computers by 5 times and the power loss by 2.5 times; (2) the size of the DC DC converter used in EVs by 3 times and the power loss by 2 times. The technology will help Canadian power supply companies, such as Magna International (major player for EV power), Delta-Q (EV power), AMD power division in Toronto, Murata Power Solutions (communication power), to stay in world leading positions in their field. The technologies optimized for GaN switch applications will also assist Canada in maintaining its position as the world leader in GaN switch design, manufacturing, and sales through companies such as GaN Systems, in Ottawa. Finally, it will support job creation and train HQPs to fill these positions. ******Twenty two HQPs trained in this program and more HQPs to be trained in the follow-up NSERC projects will transfer the newly-created technologies into new products by the above mentioned Canadian companies, and help secure their world leading positions.
降低新兴应用中使用的开关电源的功率损耗和尺寸非常重要,例如: 手机、平板电脑和笔记本电脑的供电 (PD) 适配器;和电动汽车 (EV)。 ******MOSFET(金属氧化物半导体场效应晶体管)开关专门用于当今的电源。 MOSFET技术已经发展了30多年,其性能已达到理论极限。对于 MOSFET,低功率应用(例如 65W)的最佳开关频率限制为 200 500 kHz,高功率应用(例如 1,000 5,000W 输出功率)的最佳开关频率限制为 50 100 kHz。*******GaN(镓)近年来,氮化物开关已被开发为下一代开关器件,有望取代 MOSFET。 GaN开关具有低得多的传导损耗和开关损耗。我的研究得出的结论是,当 GaN 开关用于谐振转换器时,其性能比 MOSFET 可以实现最大程度的提高。然而,为了发挥这项新技术的潜力,我们需要解决谐振转换器的一个主要限制:电压增益范围窄。当输入电压和输出电压变化范围较大时,例如大于2:1,电流谐振转换器的性能会受到显着影响。******所提出的研究计划将开发一种突破性的电源控制技术,称为使用 GaN 开关和谐振转换器的功率循环调制 (PCM) 可以:(1) 显着提高开关电源的效率和功率密度,方法是 (2) 在非常宽的输入和输出电压变化范围内实现峰值效率运行,例如为10:1,从而(3)生产出具有前所未有的高效率和高功率密度的开关电源的电源设计。******本研究计划中开发的革命性PCM技术将减小:(1)手机PD适配器的尺寸,平板电脑、笔记本电脑5倍,功耗2.5倍; (2)电动汽车中使用的DC DC转换器的尺寸增加3倍,功率损耗增加2倍。该技术将帮助加拿大电源公司,如 Magna International(电动汽车电源主要参与者)、Delta-Q(电动汽车电源)、多伦多 AMD 电源部门、Murata Power Solutions(通信电源)等,在电动汽车领域保持世界领先地位。他们的领域。针对 GaN 开关应用优化的技术还将通过渥太华 GaN Systems 等公司帮助加拿大保持 GaN 开关设计、制造和销售领域的全球领先地位。最后,它将支持创造就业机会并培训总部人员来填补这些职位。 ******本次培训的22名总部以及后续NSERC项目中将接受培训的更多总部将把上述加拿大公司的新创造技术转化为新产品,帮助他们确保其世界领先地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liu, YanFei其他文献
Liu, YanFei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liu, YanFei', 18)}}的其他基金
Power Cycle Modulation Control for High Efficiency GaN Switch Based Power Supplies
基于高效 GaN 开关的电源的功率循环调制控制
- 批准号:
RGPIN-2019-06635 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Technology Development for High Efficiency High Power Density EV DC - DC Converter
高效率高功率密度EV DC-DC转换器技术开发
- 批准号:
549915-2020 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Alliance Grants
Power Cycle Modulation Control for High Efficiency GaN Switch Based Power Supplies
基于高效 GaN 开关的电源的功率循环调制控制
- 批准号:
RGPIN-2019-06635 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Power Cycle Modulation Control for High Efficiency GaN Switch Based Power Supplies
基于高效 GaN 开关的电源的功率循环调制控制
- 批准号:
RGPIN-2019-06635 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Technology Development for High Efficiency High Power Density EV DC - DC Converter
高效率高功率密度EV DC-DC转换器技术开发
- 批准号:
549915-2020 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Alliance Grants
Technology development for a high power three-phase electric vehicle charger using GaN devices
使用GaN器件的高功率三相电动汽车充电器的技术开发
- 批准号:
518065-2017 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Development Grants
Technology development of an intergrated GaN switch power module for totem-pole bridgeless boost converter
图腾柱无桥升压变换器集成氮化镓开关电源模块技术开发
- 批准号:
507049-2016 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Development Grants
Technology development for 48V input voltage regulator for next generation data center power systems
下一代数据中心电源系统48V输入电压调节器的技术开发
- 批准号:
501420-2016 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Development Grants
Technology development for a high power three-phase electric vehicle charger using GaN devices
使用GaN器件的高功率三相电动汽车充电器的技术开发
- 批准号:
518065-2017 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Development Grants
A New Power Architecture with Wireless Feedback Control for Next Generation Server Power System
用于下一代服务器电源系统的具有无线反馈控制的新型电源架构
- 批准号:
RGPIN-2014-05693 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
日循环调制下的朗缪尔湍流及其对海洋上层动量与物质混合的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应用磁性纳米粒子调制的光学相干层析成像进行小鼠脑梗死模型皮层微循环研究
- 批准号:61771119
- 批准年份:2017
- 资助金额:67.0 万元
- 项目类别:面上项目
基于图域数字信号处理的通信信号调制识别方法研究
- 批准号:61601091
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于无线信号循环平稳特征的统计谱域信息传输理论研究
- 批准号:61671437
- 批准年份:2016
- 资助金额:66.0 万元
- 项目类别:面上项目
基于主动转速调制的旋转血泵生理自适应控制研究
- 批准号:51505455
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Modulation of cone photoreceptor function by autophagy
自噬调节视锥光感受器功能
- 批准号:
10681018 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Engineered Nanoformulation for Immune-modulation in Cancer
用于癌症免疫调节的工程纳米制剂
- 批准号:
10719487 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Small molecule modulation of 14-3-3 protein-protein interactions
14-3-3 蛋白质-蛋白质相互作用的小分子调节
- 批准号:
10607941 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Cell-lineage specific epigenomic determinants of HIV latency in humanized mouse brain and blood
人源化小鼠大脑和血液中HIV潜伏期的细胞谱系特异性表观基因组决定因素
- 批准号:
10747752 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别: