Towards Quantum Organic Optoelectronics

迈向量子有机光电子学

基本信息

  • 批准号:
    RGPIN-2014-06129
  • 负责人:
  • 金额:
    $ 3.42万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Organic semiconductors-soft synthetic materials akin to plastics or car paint-are rapidly finding their way into*consumer electronics due to their low cost and the ease with which they can be fabricated on large and flexible*surfaces. Perhaps most importantly, they are designer materials, limited only by a chemist's skill and imagination.*In contrast to conventional inorganic semiconductors, the room-temperature optical properties of organic semiconductors are dominated by excitons-bound complexes of an electron and hole-much like a mini-hydrogen atom. The stability of this exciton offers the potential of using organic films to observe exotic quantum effects typically ascribed to atomic gasses or ultralow temperatures. By exploiting these effects, this Program aims to realise a family of optoelectronic devices, based on organic semiconductors, where new functionality is achieved via the use and manipulation of quantum behaviour.**On the microscopic scale, the ease with which single-molecules can be isolated allows them to be positioned within conventional optoelectronic devices to create highly efficient, bright sources of single-photons. Such sources are at the heart of quantum cryptography-a scheme used for secure communication-and of ultraprecise measurements using quantum metrology. They are also used in implementations of quantum computing, where properties of quantum states such as superposition and entanglement are exploited to solve complex problems. The first objective of the Program is to develop highly efficient single-photon sources using organic light-emitting diode and light-emitting transistor architectures. Using the latter to control the spatial location of single-photon emission, for example, one can envision addressing individual waveguides on a large-scale photonic integrated circuit used to implement quantum algorithms.**On the macroscopic scale, quantum behaviour can be obtained by coupling several organic molecules together so that they oscillate with a well-defined phase relationship. One way to achieve this is within an optical resonator, where molecules can be made to interact strongly with a common optical field. The resulting quasiparticles, called polaritons, possess an effective mass one million times lighter than that of an electron. In quantum mechanical terms, they possess a highly extended wavefunction. If these wavefunctions begin to overlap, polaritons in their lowest energy state can interfere constructively to form an exotic state of matter called a Bose-Einstein condensate (BEC) - a giant collective wavefunction for the underlying particles. BECs have recently been realised for atomic gasses and for polaritons based on inorganic semiconductors, but in both cases have been limited to low temperatures. The second objective of this Program is to study the rich collective behaviour of organic polaritons at room temperature. Fascinating phenomena are expected, such as superfluidity, where polaritons can flow around obstacles without feeling the effect of friction and the formation of polariton beams called dark solitons. From a practical standpoint, coherent, laser-like emission from polaritons can occur at thresholds several orders of magnitude lower than those of conventional lasers. Combined with the low-cost and versatility of organic semiconductors, polariton lasers have many potential applications in chemical and biological sensing and as high-intensity illumination sources.
有机半导体(类似于塑料或汽车油漆的软合成材料)由于成本低廉且易于在大而灵活的表面上制造,正在迅速进入消费电子产品领域。也许最重要的是,它们是设计材料,仅受化学家的技能和想象力的限制。*与传统的无机半导体相比,有机半导体的室温光学性质由电子和空穴的激子束缚复合物主导,非常类似于一个微型氢原子。这种激子的稳定性提供了使用有机薄膜观察通常归因于原子气体或超低温的奇异量子效应的潜力。通过利用这些效应,该计划旨在实现一系列基于有机半导体的光电器件,其中通过使用和操纵量子行为来实现新功能。**在微观尺度上,单分子可以轻松实现隔离使得它们可以放置在传统的光电器件中,以产生高效、明亮的单光子源。这些来源是量子密码学(一种用于安全通信的方案)和使用量子计量学进行超精密测量的核心。它们还用于量子计算的实现,其中利用量子态的性质(例如叠加和纠缠)来解决复杂的问题。该计划的第一个目标是使用有机发光二极管和发光晶体管架构开发高效单光子源。例如,使用后者来控制单光子发射的空间位置,可以设想对用于实现量子算法的大规模光子集成电路上的各个波导进行寻址。**在宏观尺度上,可以通过以下方式获得量子行为将多个有机分子耦合在一起,使它们以明确的相位关系振荡。实现这一目标的一种方法是在光学谐振器中,其中分子可以与公共光场强烈相互作用。由此产生的准粒子,称为极化激元,其有效质量比电子轻一百万倍。用量子力学术语来说,它们具有高度扩展的波函数。如果这些波函数开始重叠,处于最低能量状态的极化激元可以进行相长干涉,形成一种称为玻色-爱因斯坦凝聚态(BEC)的奇异物质状态,这是底层粒子的巨大集体波函数。最近,BEC 已在原子气体和基于无机半导体的极化子中实现,但在这两种情况下都仅限于低温。该计划的第二个目标是研究有机极化子在室温下丰富的集体行为。人们预计会出现令人着迷的现象,例如超流动性,即极化子可以绕过障碍物流动而不会感受到摩擦的影响,以及称为暗孤子的极化子束的形成。从实际的角度来看,偏振子的相干、类似激光的发射可以在比传统激光器低几个数量级的阈值下发生。结合有机半导体的低成本和多功能性,偏振激元激光器在化学和生物传感以及作为高强度照明源方面具有许多潜在的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KénaCohen, Stéphane其他文献

KénaCohen, Stéphane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KénaCohen, Stéphane', 18)}}的其他基金

Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Light-Matter Photonics
光物质光子学
  • 批准号:
    CRC-2020-00295
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Canada Research Chairs
Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Photonic Devices
光子器件
  • 批准号:
    CRC-2020-00295
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Canada Research Chairs
Nanostructured and Molecular Photonics
纳米结构和分子光子学
  • 批准号:
    1000231166-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Canada Research Chairs
Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Towards tunable and scalable black phosphorus photodetectors
迈向可调谐和可扩展的黑磷光电探测器
  • 批准号:
    506808-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Projects - Group
Nanostructured and Molecular Photonics
纳米结构和分子光子学
  • 批准号:
    1000231166-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Canada Research Chairs
Passive microcavities for fast optical bistability
用于快速光学双稳态的无源微腔
  • 批准号:
    544136-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Engage Grants Program
Nanostructured and Molecular Photonics
纳米结构和分子光子学
  • 批准号:
    1000231166-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

探索提高受体相荧光量子效率,降低器件非辐射能量损失的新型三元有机光伏体系构筑策略
  • 批准号:
    22309098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
胶体量子点-有机分子杂化体系光生自由基对的磁场效应研究
  • 批准号:
    22303109
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有机分子共混InSb量子点的光电探测器制备及器件物理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金属有机框架中电子自旋量子比特在离子量子传感中的应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于碳量子点的有机磷直接检测策略与信号转化机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding and control of structure and electronic state of thin film of highly ordered organic semiconductor molecule via photoelectron-imaging
通过光电子成像了解和控制高度有序有机半导体分子薄膜的结构和电子状态
  • 批准号:
    20K15176
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Towards Quantum Organic Optoelectronics
迈向量子有机光电子学
  • 批准号:
    RGPIN-2014-06129
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Quantum Organic Optoelectronics
迈向量子有机光电子学
  • 批准号:
    RGPIN-2014-06129
  • 财政年份:
    2017
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Quantum Organic Optoelectronics
迈向量子有机光电子学
  • 批准号:
    RGPIN-2014-06129
  • 财政年份:
    2016
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Minute area XAFS development for orientational evaluations of structure controlled functional organic polymer materials
用于结构控制功能有机聚合物材料取向评估的微小面积 XAFS 开发
  • 批准号:
    16K05020
  • 财政年份:
    2016
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了