Empirical quantification and computational modeling of spine stability and neuromuscular function during dynamic movements.

动态运动过程中脊柱稳定性和神经肌肉功能的经验量化和计算建模。

基本信息

  • 批准号:
    RGPIN-2014-05560
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The global objective of my research program is to utilize novel techniques to better understand which factors contribute mechanistically to spine injury and impairment. The goal of this grant cycle is to focus specifically on stability, since stability is a fundamental concept that can be used to characterize and evaluate the functioning of a system. **A key feature to stability and appropriate neuromuscular function is the ability to effectively respond to internal and external mechanical perturbations, in order to restore an equilibrium posture or movement trajectory during motion. Spine stability is the result of a complex interaction between the osteoligamentous spine, the trunk musculature, and the neural control system; with impairment to any one subsystem, small perturbations can result in the unsuccessful transmission of compressive and shear forces and tissue strain and/or injury. However, despite the knowledge that spine stability is important, its quantification is difficult using presently available imaging, manual testing, and biomechanical modeling techniques. Moreover, to date no empirical method allows measuring stability in static and all the more in dynamic conditions.**One promising method assessing spine stability and neuromuscular function during dynamic movements is to calculate local dynamic spine stability from trunk motion data using a nonlinear dynamical systems approach. During repetitive trunk movements it is reasonable to assume that each movement cycle would be similar to every other cycle and the target kinematic trajectory or attractor. Naturally-occurring variance observed in empirical data is thus attributable to mechanical disturbances or control errors that are attenuated in time by the musculoskeletal and nervous systems. Thus, it is logical to calculate stability from the time-dependent growth or attenuation of kinematic variability in state space using the maximum Lyapunov exponent. The proposed research program will build on my previous work and has two overarching objectives: 1) to continue to improve the ability to empirically quantify and model spine stability and neuromuscular function in humans, and 2) to apply these techniques to a variety of movement scenarios to better understand how instability and impaired functioning may act as a biological or biomechanical mechanism of tissue failure and injury. **As part of objective 1, we will carry out a series of modeling-based studies that are aimed at: i) further elucidating the relationship between local dynamic spine stability and other stability measures, ii) understanding the relationship between local spine stability and global trunk stability, and iii) beginning the process of modeling the entire Lyapunov spectrum from empirical data. With the knowledge gained, objective 2 will involve applying these advanced stability assessment techniques to various movement tasks to gain a greater understanding of how mechanical loading and tissue altering properties affect (in) stability and neuromuscular function, and vice versa. Lastly, we will assess the relationship between stability and other measures of neuromuscular function (e.g. coordination), in order to fully understand its contributions to healthy movement.**As a whole, this combination of novel basic science and computational modeling has the potential to greatly benefit the Canadian natural sciences and engineering fields, as the empirical quantification of spine stability and neuromuscular function during dynamic movement will now be possible; providing us a better biological and mechanical understanding of how many anatomical, physiological, and biomechanical factors contribute mechanistically to tissue strain and/or injury during a variety of movement tasks and conditions.
我的研究计划的总体目标是利用新技术更好地了解哪些因素在机械上导致脊柱损伤和损伤。该资助周期的目标是特别关注稳定性,因为稳定性是一个基本概念,可用于表征和评估系统的功能。 **稳定性和适当的神经肌肉功能的一个关键特征是能够有效响应内部和外部机械扰动,以便在运动过程中恢复平衡姿势或运动轨迹。脊柱稳定性是脊柱骨韧带、躯干肌肉组织和神经控制系统之间复杂相互作用的结果。如果任何一个子系统受到损害,微小的扰动都可能导致压缩力和剪切力的传递失败以及组织应变和/或损伤。然而,尽管知道脊柱稳定性很重要,但使用目前可用的成像、手动测试和生物力学建模技术很难对其进行量化。此外,迄今为止,还没有经验方法可以测量静态条件下的稳定性,尤其是动态条件下的稳定性。**评估动态运动期间脊柱稳定性和神经肌肉功能的一种有前途的方法是使用非线性动力系统根据躯干运动数据计算局部动态脊柱稳定性方法。在重复的躯干运动期间,可以合理地假设每个运动周期与每个其他周期以及目标运动轨迹或吸引子相似。因此,在经验数据中观察到的自然发生的方差可归因于肌肉骨骼和神经系统及时减弱的机械干扰或控制误差。因此,使用最大李亚普诺夫指数根据状态空间中运动学变异性随时间的增长或衰减来计算稳定性是合乎逻辑的。拟议的研究计划将建立在我之前的工作基础上,并有两个总体目标:1)继续提高对人类脊柱稳定性和神经肌肉功能进行经验量化和建模的能力,2)将这些技术应用于各种运动场景更好地了解不稳定性和功能受损如何作为组织衰竭和损伤的生物或生物力学机制。 **作为目标 1 的一部分,我们将开展一系列基于模型的研究,旨在:i) 进一步阐明局部动态脊柱稳定性与其他稳定性指标之间的关系,ii) 了解局部脊柱稳定性与其他稳定性指标之间的关系。全局主干稳定性,以及 iii) 开始根据经验数据对整个李亚普诺夫谱进行建模的过程。凭借所获得的知识,目标 2 将涉及将这些先进的稳定性评估技术应用于各种运动任务,以更好地了解机械负荷和组织改变特性如何影响稳定性和神经肌肉功能,反之亦然。最后,我们将评估稳定性与其他神经肌肉功能指标(例如协调性)之间的关系,以便充分了解其对健康运动的贡献。**总的来说,新颖的基础科学和计算模型的结合有可能极大地有利于加拿大的自然科学和工程领域,因为现在可以对动态运动过程中的脊柱稳定性和神经肌肉功能进行经验量化;让我们更好地了解在各种运动任务和条件下有多少解剖学、生理学和生物力学因素在机械上导致组织应变和/或损伤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham, Ryan其他文献

Validation of a Novel Perceptual Body Image Assessment Method Using Mobile Digital Imaging Analysis: A Cross-Sectional Multicenter Evaluation in a Multiethnic Sample.
使用移动数字成像分析验证新型感知身体图像评估方法:多种族样本的横断面多中心评估。
  • DOI:
  • 发表时间:
    2024-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Braun;Ray, Ashley;Graham, Ryan;Brandner, Caleb F;Warfield, Elizabeth;Renteria, Jessica;Graybeal, Austin J
  • 通讯作者:
    Graybeal, Austin J
Early career researchers benefit from inclusive, diverse and international collaborations: Changing how academic institutions utilize the seminar series.
  • DOI:
    10.1016/j.jglr.2022.03.017
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Febria, Catherine M.;Kashian, Donna R.;Bertrand, Kory R. T.;Dabney, Brittanie;Day, Matthew;Dugdale, Madison;Ekhator, Kate O.;Esparra-Escalera, Hector J.;Graham, Ryan;Harshaw, Keira;Hunt, Darrin S.;Knorr, Savannah;Lewandowski, Katrina;Linn, Colleen;Lucas, Allison;Mundle, Scott O. C.;Raoufi, Gelareh;Salter, Chelsea;Siddiqua, Zoha;Tyagi, Smita;Wallen, Megan M.
  • 通讯作者:
    Wallen, Megan M.
A rare case of Rosai-Dorfman disease presenting as a pulmonary artery mass in a 33-year-old female with hypoxia.
  • DOI:
    10.1002/pul2.12214
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Dronamraju, Veena;McSurdy, Kaitlyn;Graham, Ryan;Rali, Parth;Kumaran, Maruti;Proca, Daniela;Lashari, Bilal;Toyoda, Yoshiya;Gupta, Rohit
  • 通讯作者:
    Gupta, Rohit

Graham, Ryan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham, Ryan', 18)}}的其他基金

Development and application of novel technologies and models for the assessment of spine stability, neuromuscular control, and loading.
开发和应用用于评估脊柱稳定性、神经肌肉控制和负载的新技术和模型。
  • 批准号:
    RGPIN-2020-04748
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of novel technologies and models for the assessment of spine stability, neuromuscular control, and loading.
开发和应用用于评估脊柱稳定性、神经肌肉控制和负载的新技术和模型。
  • 批准号:
    RGPIN-2020-04748
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and managing the relationship between soldier burden, mobility and susceptibility to enemy fire in the Canadian Armed Forces
了解和管理加拿大武装部队中士兵负担、机动性和对敌人火力的敏感性之间的关系
  • 批准号:
    567175-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Understanding and managing the relationship between soldier burden, mobility and susceptibility to enemy fire in the Canadian Armed Forces
了解和管理加拿大武装部队中士兵负担、机动性和对敌人火力的敏感性之间的关系
  • 批准号:
    567175-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Development and application of novel technologies and models for the assessment of spine stability, neuromuscular control, and loading.
开发和应用用于评估脊柱稳定性、神经肌肉控制和负载的新技术和模型。
  • 批准号:
    RGPIN-2020-04748
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of novel technologies and models for the assessment of spine stability, neuromuscular control, and loading.
开发和应用用于评估脊柱稳定性、神经肌肉控制和负载的新技术和模型。
  • 批准号:
    RGPIN-2020-04748
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of novel technologies and models for the assessment of spine stability, neuromuscular control, and loading.
开发和应用用于评估脊柱稳定性、神经肌肉控制和负载的新技术和模型。
  • 批准号:
    RGPIN-2020-04748
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of novel technologies and models for the assessment of spine stability, neuromuscular control, and loading.
开发和应用用于评估脊柱稳定性、神经肌肉控制和负载的新技术和模型。
  • 批准号:
    RGPIN-2020-04748
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical quantification and computational modeling of spine stability and neuromuscular function during dynamic movements.
动态运动过程中脊柱稳定性和神经肌肉功能的经验量化和计算建模。
  • 批准号:
    RGPIN-2014-05560
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical quantification and computational modeling of spine stability and neuromuscular function during dynamic movements.
动态运动过程中脊柱稳定性和神经肌肉功能的经验量化和计算建模。
  • 批准号:
    RGPIN-2014-05560
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于5T磁共振血管周围间隙量化模型预测AD临床进展及其与脑体积和脑血流关系的研究
  • 批准号:
    82302157
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
下肢外骨骼机器人康复训练过程中人体多参数生物演变机理和定量化评估方法研究
  • 批准号:
    52365039
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
气溶胶吸湿性的不均匀性量化方法研究
  • 批准号:
    42375083
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
磨损状态信息递归特性驱动的磨合状态辨识与性能量化评价
  • 批准号:
    52305221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高能效的移动端X-Formers轻量化技术研究
  • 批准号:
    62302086
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Empirical Quantification and Computational Modeling of Contributions to Knee Joint Exposures
对膝关节暴露的贡献的经验量化和计算模型
  • 批准号:
    418647-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical quantification and computational modeling of spine stability and neuromuscular function during dynamic movements.
动态运动过程中脊柱稳定性和神经肌肉功能的经验量化和计算建模。
  • 批准号:
    RGPIN-2014-05560
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical Quantification and Computational Modeling of Contributions to Knee Joint Exposures
对膝关节暴露的贡献的经验量化和计算模型
  • 批准号:
    418647-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical quantification and computational modeling of spine stability and neuromuscular function during dynamic movements.
动态运动过程中脊柱稳定性和神经肌肉功能的经验量化和计算建模。
  • 批准号:
    RGPIN-2014-05560
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical quantification and computational modeling of spine stability during movement
运动过程中脊柱稳定性的经验量化和计算建模
  • 批准号:
    511294-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了