Game-Changing Time Integration of Complex Systems for the Exaflop Era
Exaflop 时代复杂系统的改变游戏规则的时间集成
基本信息
- 批准号:228090-2013
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is an exciting time to be a computational scientist. By 2018, some predict we will be in the exaflop era, in which supercomputers will be some 20 times more powerful than the human brain. The enormity of these figures is rivalled only by that of the emergent opportunities for applications of this computing power. Exascale computing would allow us to tackle grand challenge problems in virtual medicine, climate change, renewable energy, advanced materials, resource recovery, and national security. These problems offer a fundamental connection between extreme computing, industrial and economic growth, and societal imperatives.The broad objectives of this research are to develop effective numerical methods and software for the simulation of complex systems that are amenable to current trends in computing hardware, especially those that are envisaged to support exascale computing. The mathematical models for the systems we study are based on evolutionary differential equations. These systems typically have multiple interacting time scales, and accordingly no single time-integration method has the characteristics to handle them all in an effective manner. The specific approach we employ is based on intelligent, fine-scale partitioning strategies combined with the design of optimized time-integration methods.Our present focus is on applying this approach to simulate the electrical activity in the heart. We have proposed novel time-integration methods for such simulations and have already demonstrated performance improvements of up to factors of 300 over current state-of-the-art methods. In the longer term, we plan to tackle whole heart simulations, in which models of electrical activity are further augmented to take into account tissue elasticity and blood flow. The performance gains in heart simulation will bring us closer to simulations that are fast enough to benefit clinical training and practice as well as personalized medicine. This research aims to provide the computational breakthroughs that can ultimately lead to an improvement in the quality of life of millions of people in Canada and around the world who are affected by heart disease.
对于一名计算科学家来说,这是一个激动人心的时刻。一些人预测,到 2018 年,我们将进入 exaflop 时代,超级计算机的计算能力将比人脑强大约 20 倍。这些数字的巨大程度只能与这种计算能力的应用的新兴机会相媲美。百亿亿次计算将使我们能够解决虚拟医学、气候变化、可再生能源、先进材料、资源回收和国家安全等领域的重大挑战问题。这些问题提供了极限计算、工业和经济增长以及社会需求之间的根本联系。这项研究的广泛目标是开发有效的数值方法和软件来模拟复杂系统,这些系统适合计算硬件的当前趋势,特别是那些被设想支持百亿亿次计算的。我们研究的系统的数学模型基于演化微分方程。这些系统通常具有多个相互作用的时间尺度,因此没有单一的时间积分方法具有以有效方式处理所有这些时间尺度的特征。我们采用的具体方法是基于智能、精细划分策略并结合优化时间积分方法的设计。我们目前的重点是应用这种方法来模拟心脏的电活动。我们为此类模拟提出了新颖的时间积分方法,并且已经证明其性能比当前最先进的方法提高了 300 倍。 从长远来看,我们计划解决整个心脏模拟问题,其中进一步增强电活动模型,以考虑组织弹性和血流。 心脏模拟的性能提升将使我们更接近足够快的模拟,从而有利于临床培训和实践以及个性化医疗。这项研究旨在提供计算突破,最终改善加拿大和世界各地数百万心脏病患者的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Spiteri, Raymond其他文献
Spiteri, Raymond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Spiteri, Raymond', 18)}}的其他基金
Scalable paradigms and software for exascale scientific computing
用于百亿亿次科学计算的可扩展范式和软件
- 批准号:
RGPIN-2020-04467 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Scalable paradigms and software for exascale scientific computing
用于百亿亿次科学计算的可扩展范式和软件
- 批准号:
RGPIN-2020-04467 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Scalable paradigms and software for exascale scientific computing
用于百亿亿次科学计算的可扩展范式和软件
- 批准号:
RGPIN-2020-04467 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Game-Changing Time Integration of Complex Systems for the Exaflop Era
Exaflop 时代复杂系统的改变游戏规则的时间集成
- 批准号:
228090-2013 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Using Big Data methods to improve fuel cell manufacturing
利用大数据方法改进燃料电池制造
- 批准号:
523106-2018 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
Mercedes Benz fuel cell process optimization
梅赛德斯奔驰燃料电池工艺优化
- 批准号:
518149-2017 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Connect Grants Level 1
Game-Changing Time Integration of Complex Systems for the Exaflop Era
Exaflop 时代复杂系统的改变游戏规则的时间集成
- 批准号:
228090-2013 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Mathematical modelling and simulation of product-innovation diffusion
产品创新扩散的数学建模与仿真
- 批准号:
485461-2015 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
Game-Changing Time Integration of Complex Systems for the Exaflop Era
Exaflop 时代复杂系统的改变游戏规则的时间集成
- 批准号:
228090-2013 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Predictive modelling and simulation of treatments for heart disease
心脏病治疗的预测建模和模拟
- 批准号:
491461-2015 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
相似国自然基金
乌菜BcFLC1基因点突变改变抽薹时间的分子机理
- 批准号:31801853
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
刺激诱发的BOLD信号时间变化性的改变与相应脑血流改变的关系:GABA-A受体的调节作用
- 批准号:31771249
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
非阈移噪声引起GABA/谷氨酸通路的改变导致中枢听觉处理功能障碍
- 批准号:81570908
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
神经病理性痛状态下前扣带皮层动作电位时间准确性发放改变的突触传递机制研究
- 批准号:81571068
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
静电场中导体球间相互作用随时间改变的机制及空间离子动力学研究
- 批准号:11304049
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Tympa Connect Platform: a novel, game-changing UK solution to the global problem of hearing loss by optimising the successful first time fitting of hearing aids.
Tympa Connect 平台:一种新颖的、改变游戏规则的英国解决方案,通过优化助听器的成功首次验配,解决全球听力损失问题。
- 批准号:
10046893 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative R&D
Game-Changing Time Integration of Complex Systems for the Exaflop Era
Exaflop 时代复杂系统的改变游戏规则的时间集成
- 批准号:
228090-2013 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Game-Changing Time Integration of Complex Systems for the Exaflop Era
Exaflop 时代复杂系统的改变游戏规则的时间集成
- 批准号:
228090-2013 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Game-Changing Time Integration of Complex Systems for the Exaflop Era
Exaflop 时代复杂系统的改变游戏规则的时间集成
- 批准号:
228090-2013 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Game-Changing Time Integration of Complex Systems for the Exaflop Era
Exaflop 时代复杂系统的改变游戏规则的时间集成
- 批准号:
228090-2013 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual