Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
基本信息
- 批准号:RGPIN-2017-06625
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Localization of wireless terminals has gained momentum over the last few years. Many applications are now being developed that provide location based services. Google map, Find My iPhone, Virtual Reality Headsets, and Pokémon Go are some examples of applications that use location information. Various new applications will be developed when 5G, Internet-of-Things, and Smart Cities technologies become available. Unfortunately, the GPS service is not available in indoors, or is very inaccurate in areas blocked by tall buildings such as downtown cores in major cities. New technologies should be developed to complement GPS and provide location estimation ubiquitously. ******Our research at the University of Toronto has been on location finding in recent past. We have developed new localization technologies based on received signal strength (RSS) using advance signal processing methods such as Compressive Sensing. We have studied WiFi received signal strength based localizations and tracking, device diversity through unsupervised learning, and crowdsourcing. We have two patented technologies and a pending patent application. Currently, we are working on location finding via image and video signal processing. ******The proposed research activity will be the continuation and refinement of our previous research. New studies have shown that using channel state information (CSI) of WiFi signals can give a significant gain in location accuracy, and that a single access point is sufficient to have decimeter level localization accuracy. There are, however, a few shortcomings in the reported literature that limits the application of these methods in practice. The method is only applicable to a pair of nodes, uses the whole ISM band in 2.4 GHz and 5.8 GHz, and its range is limited. Our work will answer some of the open problems in the application of CSI. We will use Deep Learning methods for location finding on RSS and CSI. Deep learning has gained momentum in tackling difficult problems such as voice and video classification, big data, and medical imaging. A deep neural network can extract a wide range of complex features that can be used in regression and classification. Our goal is to develop effective location finding methods that can locate users at decimeter level accuracy operating on off-the-shelf phones without any specialized hardware. **
无线终端的本地化在过去几年中得到了发展,目前正在开发许多提供基于位置的服务的应用程序,例如 Google 地图、Find My iPhone、虚拟现实耳机和 Pokémon Go。当5G、物联网和智慧城市技术出现时,新的应用将会被开发出来。不幸的是,GPS服务在室内无法使用,或者在大城市的市中心等高楼大厦遮挡的区域非常不准确。应开发新技术来补充 GPS 并提供无处不在的位置估计 ****** 我们在多伦多大学的研究最近一直在研究位置查找,我们使用先进的信号处理方法开发了基于接收信号强度 (RSS) 的新定位技术。例如,我们研究了基于 WiFi 接收信号强度的定位和跟踪、通过无监督学习实现设备多样性以及众包。目前,我们正在研究通过图像和视频信号进行定位。 ******拟议的研究。这项活动将是我们之前研究的延续和完善。新的研究表明,使用 WiFi 信号的信道状态信息 (CSI) 可以显着提高定位精度,并且单个接入点足以实现分米级的定位精度。然而,报道的文献中存在一些缺点,限制了这些方法在实践中的应用。该方法仅适用于一对节点,使用2.4 GHz和5.8 GHz的整个ISM频段,并且其范围是我们的工作将解决 CSI 应用中的一些开放性问题,我们将使用深度学习方法在 RSS 和 CSI 上进行定位。深度学习在解决语音和视频分类、大数据、深度神经网络可以提取可用于回归和分类的各种复杂特征,我们的目标是开发有效的定位方法,可以在现成的手机上以分米级的精度定位用户。无需任何专门的硬件**。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valaee, Shahrokh其他文献
Reliable Periodic Safety Message Broadcasting in VANETs Using Network Coding
- DOI:
10.1109/twc.2014.010214.122008 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:10.4
- 作者:
Hassanabadi, Behnam;Valaee, Shahrokh - 通讯作者:
Valaee, Shahrokh
Synthesizing Chest X-Ray Pathology for Training Deep Convolutional Neural Networks
- DOI:
10.1109/tmi.2018.2881415 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:10.6
- 作者:
Salehinejad, Hojjat;Colak, Errol;Valaee, Shahrokh - 通讯作者:
Valaee, Shahrokh
A Survey on Behavior Recognition Using WiFi Channel State Information
- DOI:
10.1109/mcom.2017.1700082 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:11.2
- 作者:
Yousefi, Siamak;Narui, Hirokazu;Valaee, Shahrokh - 通讯作者:
Valaee, Shahrokh
Diversified viral marketing: The power of sharing over multiple online social networks
- DOI:
10.1016/j.knosys.2019.105430 - 发表时间:
2020-04-06 - 期刊:
- 影响因子:8.8
- 作者:
Al Abri, Dawood;Valaee, Shahrokh - 通讯作者:
Valaee, Shahrokh
Distributed Optimal TXOP Control for Throughput Requirements in IEEE 802.11e Wireless LAN
- DOI:
10.1109/pimrc.2011.6140106 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:0
- 作者:
Lee, Ju Yong;Hwang, Ho Young;Valaee, Shahrokh - 通讯作者:
Valaee, Shahrokh
Valaee, Shahrokh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valaee, Shahrokh', 18)}}的其他基金
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
- 批准号:
RGPIN-2017-06625 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
- 批准号:
RGPIN-2017-06625 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Location-aware Secutiry and Privacy in 5G Wireless Networks
5G 无线网络中的位置感知安全和隐私
- 批准号:
494075-2016 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Strategic Projects - Group
Automatic Training and Radiomap Collection for Indoor Location Estimation
用于室内位置估计的自动训练和无线电地图收集
- 批准号:
531951-2018 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
- 批准号:
RGPIN-2017-06625 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
- 批准号:
RGPIN-2017-06625 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Location-aware Secutiry and Privacy in 5G Wireless Networks
5G 无线网络中的位置感知安全和隐私
- 批准号:
494075-2016 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Strategic Projects - Group
Privacy Preserving Location Estimation
隐私保护位置估计
- 批准号:
RGPIN-2016-06445 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Location-aware Secutiry and Privacy in 5G Wireless Networks
5G 无线网络中的位置感知安全和隐私
- 批准号:
494075-2016 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Strategic Projects - Group
Automatic vehicule identification using WiFi positioning
利用WiFi定位自动识别车辆
- 批准号:
500256-2016 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
面向异质化感控弱终端的高适配性空地协同无线能量补给技术研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
关于绿色高效安全的物联网终端设备远场无线充电的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
无线移动终端的MIMO天线系统关键技术研究
- 批准号:61501340
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用于UWB-MIMO无线终端的高性能多天线研究
- 批准号:61271027
- 批准年份:2012
- 资助金额:76.0 万元
- 项目类别:面上项目
基于IPv6无线网络智能终端的恶意代码研究
- 批准号:61202358
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Localization of Wireless Terminals via Ising Energy Minimization
通过 Ising 能量最小化实现无线终端的本地化
- 批准号:
572861-2022 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Alliance Grants
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
- 批准号:
RGPIN-2017-06625 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
- 批准号:
RGPIN-2017-06625 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
- 批准号:
RGPIN-2017-06625 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
- 批准号:
RGPIN-2017-06625 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual