Localization of Wireless Terminals via Deep Learning

通过深度学习定位无线终端

基本信息

  • 批准号:
    RGPIN-2017-06625
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Localization of wireless terminals has gained momentum over the last few years. Many applications are now being developed that provide location based services. Google map, Find My iPhone, Virtual Reality Headsets, and Pokémon Go are some examples of applications that use location information. Various new applications will be developed when 5G, Internet-of-Things, and Smart Cities technologies become available. Unfortunately, the GPS service is not available in indoors, or is very inaccurate in areas blocked by tall buildings such as downtown cores in major cities. New technologies should be developed to complement GPS and provide location estimation ubiquitously. ******Our research at the University of Toronto has been on location finding in recent past. We have developed new localization technologies based on received signal strength (RSS) using advance signal processing methods such as Compressive Sensing. We have studied WiFi received signal strength based localizations and tracking, device diversity through unsupervised learning, and crowdsourcing. We have two patented technologies and a pending patent application. Currently, we are working on location finding via image and video signal processing. ******The proposed research activity will be the continuation and refinement of our previous research. New studies have shown that using channel state information (CSI) of WiFi signals can give a significant gain in location accuracy, and that a single access point is sufficient to have decimeter level localization accuracy. There are, however, a few shortcomings in the reported literature that limits the application of these methods in practice. The method is only applicable to a pair of nodes, uses the whole ISM band in 2.4 GHz and 5.8 GHz, and its range is limited. Our work will answer some of the open problems in the application of CSI. We will use Deep Learning methods for location finding on RSS and CSI. Deep learning has gained momentum in tackling difficult problems such as voice and video classification, big data, and medical imaging. A deep neural network can extract a wide range of complex features that can be used in regression and classification. Our goal is to develop effective location finding methods that can locate users at decimeter level accuracy operating on off-the-shelf phones without any specialized hardware. **
在过去的几年中,无线终端的局部化已经增长。现在正在开发许多提供基于位置服务的应用程序。 Google Map,查找我的iPhone,虚拟现实耳机和PokémonGO是使用位置信息的应用程序的一些示例。当5G,Things-of-Things和Smart Cities Technologies提供时,将开发各种新应用程序。不幸的是,GPS服务在狗中不可用,或者在被主要城市的市区核心等高层建筑所阻挡的地区非常不准确。应开发新技术以补充GP并普遍提供位置估计。 *****我们在多伦多大学的研究一直在最近的发现。我们使用预先信号处理方法(例如压缩传感)基于接收的信号强度(RSS)开发了新的定位技术。我们研究了WiFi通过无监督学习和众包收到了基于信号强度的本地化和跟踪,设备多样性。我们有两种专利技术和尚待专利申请。目前,我们正在通过图像和视频信号处理进行位置查找。 *****拟议的研究活动将是我们以前的研究的延续和完善。新的研究表明,使用WIFI信号的通道状态信息(CSI)可以带来显着的位置准确性,并且单个访问点足以具有决策水平的定位准确性。但是,报告的文献中存在一些缺点,这些缺点限制了这些方法在实践中的应用。该方法仅适用于一对节点,使用2.4 GHz和5.8 GHz的整个ISM频段,其范围是有限的。我们的工作将回答CSI应用中的一些开放问题。我们将使用深度学习方法进行RSS和CSI的位置查找。深度学习在解决难题,例如语音和视频分类,大数据和医学成像等困难问题方面已有势头。深度神经元网络可以提取可用于回归和分类的广泛复杂特征。我们的目标是开发有效的位置查找方法,这些方法可以在分解器级别上定位用户在现成的手机上精确操作而无需任何专业硬件。 **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valaee, Shahrokh其他文献

Reliable Periodic Safety Message Broadcasting in VANETs Using Network Coding
Synthesizing Chest X-Ray Pathology for Training Deep Convolutional Neural Networks
  • DOI:
    10.1109/tmi.2018.2881415
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Salehinejad, Hojjat;Colak, Errol;Valaee, Shahrokh
  • 通讯作者:
    Valaee, Shahrokh
Diversified viral marketing: The power of sharing over multiple online social networks
  • DOI:
    10.1016/j.knosys.2019.105430
  • 发表时间:
    2020-04-06
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Al Abri, Dawood;Valaee, Shahrokh
  • 通讯作者:
    Valaee, Shahrokh
A Survey on Behavior Recognition Using WiFi Channel State Information
  • DOI:
    10.1109/mcom.2017.1700082
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Yousefi, Siamak;Narui, Hirokazu;Valaee, Shahrokh
  • 通讯作者:
    Valaee, Shahrokh
Distributed Optimal TXOP Control for Throughput Requirements in IEEE 802.11e Wireless LAN

Valaee, Shahrokh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valaee, Shahrokh', 18)}}的其他基金

Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
  • 批准号:
    RGPIN-2017-06625
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
  • 批准号:
    RGPIN-2017-06625
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Location-aware Secutiry and Privacy in 5G Wireless Networks
5G 无线网络中的位置感知安全和隐私
  • 批准号:
    494075-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Strategic Projects - Group
Automatic Training and Radiomap Collection for Indoor Location Estimation
用于室内位置估计的自动训练和无线电地图收集
  • 批准号:
    531951-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
  • 批准号:
    RGPIN-2017-06625
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
  • 批准号:
    RGPIN-2017-06625
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Location-aware Secutiry and Privacy in 5G Wireless Networks
5G 无线网络中的位置感知安全和隐私
  • 批准号:
    494075-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Strategic Projects - Group
Privacy Preserving Location Estimation
隐私保护位置估计
  • 批准号:
    RGPIN-2016-06445
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Location-aware Secutiry and Privacy in 5G Wireless Networks
5G 无线网络中的位置感知安全和隐私
  • 批准号:
    494075-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Strategic Projects - Group
Automatic vehicule identification using WiFi positioning
利用WiFi定位自动识别车辆
  • 批准号:
    500256-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

面向异质化感控弱终端的高适配性空地协同无线能量补给技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
面向异质化感控弱终端的高适配性空地协同无线能量补给技术研究
  • 批准号:
    62272244
  • 批准年份:
    2022
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
关于绿色高效安全的物联网终端设备远场无线充电的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
无线移动终端的MIMO天线系统关键技术研究
  • 批准号:
    61501340
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用于UWB-MIMO无线终端的高性能多天线研究
  • 批准号:
    61271027
  • 批准年份:
    2012
  • 资助金额:
    76.0 万元
  • 项目类别:
    面上项目

相似海外基金

Localization of Wireless Terminals via Ising Energy Minimization
通过 Ising 能量最小化实现无线终端的本地化
  • 批准号:
    572861-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alliance Grants
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
  • 批准号:
    RGPIN-2017-06625
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
  • 批准号:
    RGPIN-2017-06625
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
  • 批准号:
    RGPIN-2017-06625
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Localization of Wireless Terminals via Deep Learning
通过深度学习定位无线终端
  • 批准号:
    RGPIN-2017-06625
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了