Algorithmically Designed Optoelectronic Devices

算法设计的光电器件

基本信息

  • 批准号:
    RGPIN-2019-05130
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The program described herein explores the algorithmic design, experimental fabrication, and characterisation of nanophotonic structures for optoelectronic devices. The long term objective is to utilise these processes to create 3D structured devices, including photonic siphons, spectral sorters, and hybrid antennas, which would allow revolutionary advances for the fields of quantum computing, solar energy conversion, and machine vision.***The major objectives of this program are threefold:******1Algorithmic design***At the nanoscale, light behaves both as a particle and a wave, complicating the design of structures with sub-wavelength features, to the point where even the function of a nanophotonic component cannot be determined intuitively. Algorithmic design addresses this, allowing full-wave optical simulations to dictate the geometry of the nanophotonic object. We previously demonstrated the use of an evolutionary algorithm to design ~2.5D dielectric structures. These design techniques will now be taken much furtherincorporation of artificial neural networks, automatic differentiation-based simulations, and inverse design, will allow structures to be designed faster and with larger degrees of freedom. This allows us to expand into fully 3D designs, and even multi-material systems, thereby not only achieving further improvements in performance, but also introducing a wide range of unprecedented optical and electronic functionalities.******2Fabrication in 3D***Cognisant of the limited 3D structure in optoelectronic devices, our second objective is the creation of ways to fabricate the complex multi-material systems our algorithms design. We have previously demonstrated the ability to utilise 3D multi-photon lithography techniques to produce nanophotonic structures with sub-wavelength features. This will continue to be developed, along with exploration into new techniques as well; we are currently collaborating to introduce 3D printing using electron beam-induced deposition for feature resolutions of tens of nanometers. This is currently being explored for glassy materials, but will be expanded to metals as well. Furthermore, we are collaborating to utilise self-assembly of complex 3D geometries to allow parallel deposition of structures over a large substrate, and even deposition of semiconductor materials.******2Nanophotonic characterisation***Characterisation at high resolution is essential to the development of new devices, particularly those with novel properties. Previously we applied a super-resolution localisation microscopy technique to probe the photonic environment around simple nanowire structures. This will be further developed to understand the performance of the much more complex devices created in this program. Furthermore, an integrated in situ fabrication and measurement system will allow for development of novel structures in an automated system, providing a physical accompaniment to the algorithmic design process of the first objective.
本文描述的程序探讨了光电设备的纳米光子结构的算法设计,实验制造和表征。长期目标是利用这些过程来创建3D结构化设备,包括光子虹吸器,光谱词汇和混合天线,这将允许量子计算,太阳能转换和机器视觉领域的革命性进步。具有次波长特征的结构的设计,以至于甚至无法直观地确定纳米光分量的功能。算法设计解决了这一点,允许全波光学模拟决定纳米光对象的几何形状。我们先前证明了使用进化算法来设计〜2.5D介电结构。现在,这些设计技术将在人工神经网络,基于自动分化的模拟和逆设计中更加进一步构建,将使结构的设计更快,更大。 This allows us to expand into fully 3D designs, and even multi-material systems, thereby not only achieving further improvements in performance, but also introducing a wide range of unprecedented optical and electronic functionalities.******2Fabrication in 3D***Cognisant of the limited 3D structure in optoelectronic devices, our second objective is the creation of ways to fabricate the complex multi-material systems our algorithms 设计。我们以前已经证明了利用3D多光子光刻技术来生产具有子波长度特征的纳米光子结构的能力。这也将继续开发,以及对新技术的探索。目前,我们正在合作使用电子束诱导的沉积来引入3D打印,以用于数十纳米的特征分辨率。目前正在为玻璃材料探索这一点,但也将扩展到金属。此外,我们正在合作利用复杂的3D几何形状的自组装来允许在大型基板上平行结构的平行沉积,甚至是半导体材料的沉积。****************************在高分辨率上表征高分辨率对于新设备的开发,尤其是新设备的开发,尤其是那些具有新颖属性的特征至关重要。以前,我们应用了一种超分辨率定位显微镜技术来探测简单纳米线结构周围的光子环境。这将进一步开发,以了解该程序中创建的更复杂的设备的性能。此外,一个集成的原位制造和测量系统将允许在自动化系统中开发新的结构,从而为第一个目标的算法设计过程提供物理伴奏。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Johlin, Eric其他文献

Machine Learning in Interpolation and Extrapolation for Nanophotonic Inverse Design.
  • DOI:
    10.1021/acsomega.2c04526
  • 发表时间:
    2022-09-20
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Acharige, Didulani;Johlin, Eric
  • 通讯作者:
    Johlin, Eric
3D multi-energy deconvolution electron microscopy
  • DOI:
    10.1039/c6nr07991a
  • 发表时间:
    2017-01-14
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    de Goede, Michiel;Johlin, Eric;Garnett, Erik C.
  • 通讯作者:
    Garnett, Erik C.

Johlin, Eric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Johlin, Eric', 18)}}的其他基金

Algorithmically Designed Optoelectronic Devices
算法设计的光电器件
  • 批准号:
    RGPIN-2019-05130
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmically Designed Optoelectronic Devices
算法设计的光电器件
  • 批准号:
    RGPIN-2019-05130
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
System for fabrication and characterisation of novel perovskite solar cells
新型钙钛矿太阳能电池的制造和表征系统
  • 批准号:
    RTI-2022-00635
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Tools and Instruments
Algorithmically Designed Optoelectronic Devices
算法设计的光电器件
  • 批准号:
    RGPIN-2019-05130
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmically Designed Optoelectronic Devices
算法设计的光电器件
  • 批准号:
    DGECR-2019-00223
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Algorithmic Fabrication of Nanophotonic Structures
纳米光子结构的算法制造
  • 批准号:
    RTI-2019-00287
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Tools and Instruments

相似国自然基金

基于配体保护金纳米核壳团簇的单分子光电子器件理论研究和设计
  • 批准号:
    12304300
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
力学驱动的三维智能仿生光电子器件设计与组装研究
  • 批准号:
    12102221
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
应用于光电子集成设计自动化的无源光子器件建模技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
应用于光电子集成设计自动化的无源光子器件建模技术研究
  • 批准号:
    62165003
  • 批准年份:
    2021
  • 资助金额:
    35.00 万元
  • 项目类别:
    地区科学基金项目
力学驱动的三维智能仿生光电子器件设计与组装研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
  • 批准号:
    MR/Y020286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship
RII Track-4: NSF: Fabrication of Inversely Designed Nanophotonic Structures for Quantum Emitters
RII Track-4:NSF:用于量子发射器的逆向设计纳米光子结构的制造
  • 批准号:
    2327223
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
  • 批准号:
    2418277
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
All for data, data for all: Improving accessibility of healthcare data through a co-designed augmentation of an existing online rehabilitation application.
一切为了数据,数据为所有人:通过共同设计的现有在线康复应用程序的增强功能,提高医疗保健数据的可访问性。
  • 批准号:
    10054277
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant for R&D
Development of a customed designed oxygenation system combined with novel therapy to treat reperfusion injury following Neurovascular Thrombectomy.
开发定制设计的氧合系统与新疗法相结合,治疗神经血管血栓切除术后的再灌注损伤。
  • 批准号:
    10057485
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了