Extremal and stability results for graphs and hypergraphs

图和超图的极值和稳定性结果

基本信息

  • 批准号:
    RGPIN-2017-04215
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

A graph is an abstract configuration consisting of a set of vertices and a set of edges, where each edge is a subset of the vertex set of size two. A hypergraph is similar except that edges can have any size. Many real-world phenomena can be modelled as graphs or hypergraphs, and contributions to the theory of graphs and hypergraphs can have important practical applications, for example in efficiency and reliability of communication or power systems networks.******My research is in extremal problems for graphs and hypergraphs. The general extremal problem is to maximize or minimize one parameter in terms of another (or others). For example, a natural graph parameter is the maximum degree, the largest number of edges containing any given vertex. Here is a typical extremal question: what is the smallest M such that every vertex partition of a graph G with maximum degree d into classes of size at least M contains an independent transversal (a choice of one vertex in each class such that no edge of G joins any two chosen vertices)? This very general problem comes up in many different settings in mathematics and computer science. I answered it in my work some years ago, showing that M=2d is the correct value. Moreover this is best possible, in that there exist graphs with partition class size 2d-1 that do not have independent transversals (such graphs are called extremal for the problem). This theorem now has many applications by various authors, to results in graph theory (including many different aspects of graph colouring), hypergraph matching, group theory, ring theory and resource allocation problems in computer science.******An important problem associated with any extremal question is the so-called stability version: if the chosen parameter of a given graph G is close to the maximum (or minimum) possible value, is the structure of G close to that of an extremal configuration? The significance of the stability version of an extremal theorem is seen in its applications: if in an application one knows structural information about the graphs involved that shows they are not close to extremal examples, then improved bounds will result.******One of the main aims of my proposed research is to obtain stability versions of certain extremal problems in graphs and hypergraphs, e.g. the one described above. Because of the large number of existing applications of the results I intend to address, stability versions would have significant impact in many areas.******Other aspects of my current research are more directly tied to applications. For example, I have worked with a team of power systems engineers on using graph theory for efficient modelling of power supply networks in the setting of the new Smart Grid in Ontario, and I expect to continue on similar projects with this same team. With colleagues in computer science I have developed algorithms for morphing planar graphs, a problem that arises in computer animation, medical imaging and motion planning.
图是由一组顶点和一组边缘组成的抽象配置,其中每个边缘是大小二的顶点集的子集。超图相似,除了边缘可以具有任何尺寸。许多现实现象可以建模为图形或超图,对图和超图理论的贡献可以具有重要的实际应用,例如在通信或电力系统网络的效率和可靠性方面。一般的极端问题是用另一个(或其他)最大化或最小化一个参数。例如,自然图参数是最大程度,是包含任何给定顶点的最大数量边缘。这是一个典型的极端问题:最小的m是什么,使得Graph g的每个顶点分区最高d至少为M的大小至少包含M含有独立的横向(每个类中一个一个顶点的选择,以至于没有G的边缘连接到任何两个选择的顶点)?这个非常普遍的问题在数学和计算机科学领域的许多不同环境中出现。几年前,我在工作中回答了这一点,表明M = 2D是正确的值。此外,这是最好的,因为存在没有独立横向的分区类尺寸2D-1的图(此类图被称为“极端”问题)。 This theorem now has many applications by various authors, to results in graph theory (including many different aspects of graph colouring), hypergraph matching, group theory, ring theory and resource allocation problems in computer science.******An important problem associated with any extremal question is the so-called stability version: if the chosen parameter of a given graph G is close to the maximum (or minimum) possible value, is the structure of G close to that of an extremal configuration?在其应用中可以看到稳定版本的稳定性版本的意义:如果在应用程序中知道有关图表的结构信息,这些信息表明它们与极端示例不接近,那么改进的界限将会导致。****** ******我拟议的研究的主要目的之一是,我所提出的研究的主要目的之一是获得图和超级图中某些极端问题的稳定性版本,例如。上面描述的一个。由于我打算解决的结果的现有应用程序大量应用,因此稳定版本在许多领域都会产生重大影响。******我当前研究的其他方面与应用更直接相关。例如,我曾与一个电力系统工程师团队合作,使用图理论在安大略省的新智能电网的设置中有效地建模电源网络,我希望能够继续与同一团队一起进行类似的项目。在计算机科学领域的同事中,我开发了用于变形平面图的算法,这是计算机动画,医学成像和运动计划中出现的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haxell, Penny其他文献

Haxell, Penny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haxell, Penny', 18)}}的其他基金

Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

面向安全稳定生产的风电智能预测预警机制研究
  • 批准号:
    62366039
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
神经干细胞外泌体传递YBX1调控ANXA2稳定性缓解脑缺血再灌注损伤机制研究
  • 批准号:
    82360386
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
BCLAF1通过YTHDF2调控RNA稳定性促进食管鳞癌代谢重编程的机制研究
  • 批准号:
    82372680
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
稳定共轭二并与三并莫比乌斯结构的精准构筑与性质研究
  • 批准号:
    22371243
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
利用油菜-菘蓝附加系解析板蓝根药用活性成分及遗传稳定的抗病毒油菜创制
  • 批准号:
    32372088
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Proactive and reactive perturbation training to reduce falls and improve gait stability in people with chronic stroke
主动和反应性扰动训练可减少慢性中风患者跌倒并提高步态稳定性
  • 批准号:
    10614928
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Stem cell-loaded microgels to treat discogenic low back pain
装载干细胞的微凝胶可治疗椎间盘源性腰痛
  • 批准号:
    10398627
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Proactive and reactive perturbation training to reduce falls and improve gait stability in people with chronic stroke
主动和反应性扰动训练可减少慢性中风患者跌倒并提高步态稳定性
  • 批准号:
    10380567
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
OUTLAST - A First Multiple-Dose Efficacy Study of IXT-m200, an anti-METH Monoclonal Antibody, in Patients with METH Use Disorder
OUTLAST - IXT-m200(一种抗冰毒单克隆抗体)在冰毒使用障碍患者中的​​首次多剂量疗效研究
  • 批准号:
    10399794
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了