Applications of random matrix theory in analytic number theory

随机矩阵理论在解析数论中的应用

基本信息

  • 批准号:
    RGPIN-2019-04888
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This research proposal lies at the intersection of analytic number theory and random matrix theory. Analytic number theory is the part of number theory that makes use of mathematical analysis to study topics like the distribution of prime numbers. Topics like these are a part of pure math but have applications to cryptography for instance. Random matrix theory is the study of matrices with entries that have been chosen randomly. Many important questions in the area concern the distribution of eigenvalues of random matrices. Such questions were first motivated by mathematical physics, statistics, and population biology and answers provided by random matrix theory yield important insights in these fields.******Analytic number theory and random matrix theory are quite disparate fields, but there exist remarkable connections between them. The first such link arose in work of H. Montgomery on the zeros of the Riemann zeta-function. These zeros are important because they characterize the distribution of primes. Remarkably, at least numerically, the spacings between the zeros seem to resemble the spacings between eigenvalues of a wide variety of random matrices - but no one can prove that this is actually so. Other complex systems also seem to display the same or related patterns, and why this pattern appears in such disparate contexts remains a mystery. (Another surprising example is the spacing between bus arrival times in the Mexican city of Cuernavaca.)******One part of the research program outlined in this proposal seeks to better understand why spacings between zeta zeros resemble spacings between eigenvalues by 1) developing an illuminating combinatorial framework for understanding this fact, 2) building random models of the Riemann zeta-function, and 3) developing links to the theory of stochastic point processes. Aspects of these three points have already been used to resolve or shed light on old unresolved problems. A second part of this proposal involves the study of products of pseudo-random matrices - this has applications to the distribution of the famous Rudin-Shapiro polynomials, which are interesting for their own sake to analysts and number theorists, but which also have applications in signal processing. Again, ideas related to this second part have also been used to resolve old open problems in mathematics. ******Highly qualified personnel will be trained throughout this proposal by learning and developing aspects of probability (including random matrix theory and the theory of point processes), combinatorics (including combinatorial representation theory), and number theory, with an eventual goal of pursuing careers in academia or industry (in for instance data science, wireless communications, or data security).
该研究建议在于分析数理论与随机矩阵理论的相交。分析数理论是数字理论的一部分,它利用数学分析来研究诸如质数分布之类的主题。像这样的主题是纯数学的一部分,但例如密码学应用程序。随机矩阵理论是对已随机选择的条目的矩阵的研究。该地区的许多重要问题涉及随机矩阵特征值的分布。此类问题首先是由数学物理,统计学和种群生物学的动机,而随机矩阵理论提供的答案在这些领域中产生了重要的见解。******分析数理论和随机矩阵理论是截然不同的领域,但它们之间存在着显着的联系。第一个这种联系在H. Montgomery在Riemann Zeta功能的零上的作品中产生。这些零很重要,因为它们表征了素数的分布。值得注意的是,至少从数字上讲,零之间的间距似乎类似于各种随机矩阵的特征值之间的间距 - 但是没有人能证明这实际上是如此。其他复杂的系统似乎也显示出相同或相关的模式,以及为什么这种模式出现在这种不同的上下文中仍然是一个谜。 (另一个令人惊讶的例子是,在墨西哥城市Cuernavaca到达的时间之间的间距。)******该提案中概述的研究计划的一个部分试图更好地理解为什么Zeta Zeros之间的间距类似于Zeta Zeros之间的间距类似于特征值之间的间距,从而开发了一个启动的组合框架,以理解这一事实,以构建该事实,以构建3个型号,3) - 2) - 构建3) - 2) - 2) - 2)fi ri n ri fi afi fie and 3 3) - 2) - 2) - 2) - 2) - 2)fi ri fi afi fi afi fii fie and ri fi afi fi afi fi afi n ri。链接到随机点过程的理论。这三个方面的各个方面已被用来解决或阐明旧的未解决问题。该提案的第二部分涉及对伪随机矩阵的产物进行研究 - 这在著名的Rudin-Shapiro多项式分布中有应用,这对于他们自身对分析师和数字理论家的考虑来说很有趣,但在信号处理中也有应用。同样,与第二部分相关的想法也被用来解决数学中的旧开放问题。 *****将在整个建议中培训高素质的人员,通过学习和发展概率的方面(包括随机矩阵理论和点过程理论),组合主义者(包括组合代表理论)和数字理论,最终的目的是追求学术界或行业的护理人员(例如数据科学,无线通信,无线通信,或无线数据安全)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Rodgers, Bradley的其他基金

Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
    RGPIN-2019-04888
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
    RGPIN-2019-04888
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
    RGPIN-2019-04888
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    DGECR-2019-00360
    DGECR-2019-00360
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Discovery Launch Supplement
    Discovery Launch Supplement

相似国自然基金

随机乘积和带状矩阵最大特征值的极限分布
  • 批准号:
    12371157
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
随机矩阵理论与深度学习的智能配电网故障感知方法研究
  • 批准号:
    62302034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机整数与随机排列的因子分布和Smith矩阵算术性质的研究
  • 批准号:
    12371333
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于随机矩阵理论的大维非线性结构总体协方差矩阵推断研究
  • 批准号:
    12301351
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机矩阵算法及其去随机化的研究
  • 批准号:
    62372424
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Standard Grant
    Standard Grant
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
  • 批准号:
    2316836
    2316836
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Standard Grant
    Standard Grant
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
    RGPIN-2019-04888
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Random Matrix Theory And Its Applications
随机矩阵理论及其应用
  • 批准号:
    575695-2022
    575695-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
    RGPIN-2019-04888
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual