Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems

子图扩展问题:结构、表征及其与边加权着色问题的联系

基本信息

  • 批准号:
    RGPIN-2014-05317
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Subgraph extension and graph coloring problems* Graph Theory is an old but re-born and energized branch of mathematics. It has grown rapidly since the 1960's with its applications spreading to Physics, Biology and Operations Research, in particular to Computing Science and communication networks. Often graphs are used as a working frame for various scientific investigations. In particular, Computing Science has provided many interesting problems for Graph Theory to grow. More recently, Graph Theory has become a useful instrument for the study of gene sequences, environment sustainability, management science and logic designing. * The proposed program is to expand our knowledge on graph factors, subgraph extension and its connection to other combinatorial topics. The objectives are to acquire knowledge, both for research and HQP training in three ways:* 1) To understand the structures of subgraph extension graphs (i.e., (Y, H)-extendable graphs) by developing a decomposition procedure for the purpose of general recursive arguments. Such a decomposition will be vital for the design of efficient algorithms to recognize and to construct the family of such graphs. This work involves to generalize the existing techniques and methods, and to create new analysis tools for the general framework and abstract models. * 2) The research will deliver a more consistent and universal framework for the potential applications of subgraph extension to other combinatorial problems and other mathematical branches. The concept, (Y, H)-extendable graphs, is a well-defined framework, which not only consolidate many well-known concepts (e.g., factor-critical graph, bicritical graphs and defect-d matching) together and also maintain the basic properties of its sub-classes. This enables us to simplify many of the previous proofs and establish closer connections to other graph theory problems. * 3) In our proposal, we have stated many closely related and well-defined problems. These problems have different levels of difficulties, from conjectures and open problems, to generalization of known results and construction of specified classes of graphs; we also carefully select and blend the problems in proposal by considering our short-term and long-term objectives. The problems proposed will fulfill my vision in the study of subgraph extension and also provide opportunities for involvement of undergraduate and graduate students to engage in creation, exploration and experiencing rigorous research.
子图扩展和图形着色问题*图理论是数学的旧但重生且充满活力的分支。自1960年代以来,它的应用已扩展到物理,生物学和运营研究,尤其是计算科学和通信网络。通常,图被用作各种科学研究的工作框架。特别是,计算科学为图理论提供了许多有趣的问题。 最近,图理论已成为研究基因序列,环境可持续性,管理科学和逻辑设计的有用工具。 *拟议的程序是扩展我们对图形因素,子图扩展及其与其他组合主题的联系的知识。这些目标是通过三种方式获取研究和HQP培训的知识:* 1)通过为一般递归参数的目的制定分解程序,以了解子图扩展图(即(y,h) - 可扩展图)的结构。 这样的分解对于设计有效算法的设计和构建此类图的家族至关重要。这项工作涉及概括现有技术和方法,并为一般框架和摘要模型创建新的分析工具。 * 2)该研究将为子图扩展到其他组合问题和其他数学分支的潜在应用提供更加一致和普遍的框架。 该概念(y,h) - 可扩展图是一个明确定义的框架,它不仅合并了许多众所周知的概念(例如,关键因素图,两性图形图和缺陷d匹配),还保持其子类的基本属性。这使我们能够简化以前的许多证据,并与其他图理论问题建立更紧密的联系。 * 3)在我们的提案中,我们指出了许多密切相关且定义明确的问题。这些问题有不同程度的困难,从猜想和开放问题到已知结果的概括以及指定图类别的构建;我们还通过考虑我们的短期和长期目标来仔细选择并融合提案中的问题。 提出的问题将满足我在研究子图扩展方面的愿景,还为本科生和研究生参与参与创建,探索和经历严格的研究提供了机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu, Qinglin其他文献

Burdens and Difficulties Experienced by Parental Caregivers of Children and Adolescents with Idiopathic Nephrotic Syndrome in Mainland China: A Qualitative Study.
  • DOI:
    10.2147/jmdh.s413677
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hu, Xinmiao;Wu, Qian;Lu, Qunfeng;Zhang, Jiangao;Yang, Xiaowei;Chen, Wenjian;Wang, Ping;Yu, Qinglin;Dong, Jingan;Sang, Yan
  • 通讯作者:
    Sang, Yan
On the existence of general factors in regular graphs
论正则图中一般因子的存在性
Effect of curing conditions on freeze-thaw resistance of geopolymer mortars containing various calcium resources
  • DOI:
    10.1016/j.conbuildmat.2021.125507
  • 发表时间:
    2021-11-08
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Jiao, Zhenzhen;Li, Xueying;Yu, Qinglin
  • 通讯作者:
    Yu, Qinglin
Maximum fractional factors in graphs
图表中的最大分数因子
  • DOI:
    10.1016/j.aml.2007.02.004
  • 发表时间:
    2007-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Liu, Guizhen;Zhang, Lanju;Yu, Qinglin
  • 通讯作者:
    Yu, Qinglin
Construction of public health core competence and the improvement of its legal guarantee in China.
  • DOI:
    10.3389/fpubh.2023.1125591
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Huang, Lansong;Yu, Qinglin;Wang, Quansheng
  • 通讯作者:
    Wang, Quansheng

Yu, Qinglin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu, Qinglin', 18)}}的其他基金

Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Predictive models of energy conservation at HVC and its sensitivity analysis
HVC节能预测模型及其敏感性分析
  • 批准号:
    465039-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Engage Plus Grants Program
Combinatoral problems on matching extension and graph factors
匹配扩展和图因子的组合问题
  • 批准号:
    122059-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

AHR通过CYP1A1/iNOS途径调控Hemin介导的小胶质细胞M1极化在脑出血继发血肿扩大中的作用与机制研究
  • 批准号:
    82302453
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
外资进入与中国制造业扩大进口:理论分析与经验证据
  • 批准号:
    72373023
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
有限注意力下的预期形成和管理:基于扩大内需的视角
  • 批准号:
    72303129
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的多源异构数据分析构建脑出血血肿扩大风险预警模型研究
  • 批准号:
    62206186
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
散射介质扩大全息显示视场角的作用机理分析及算法设计
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Novel Human Virus in Patients with Cryptogenic Liver Disease
隐源性肝病患者中的一种新型人类病毒
  • 批准号:
    10636331
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
  • 批准号:
    22H01134
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analogues of the Weierstrass representation formula and extension problem of submanifolds at their singularities
Weierstrass 表示公式的类似物和奇点处子流形的可拓问题
  • 批准号:
    22H01121
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Omics information maximization in single-cell sequencing with hybrid molecular and computational approaches
使用混合分子和计算方法实现单细胞测序中的组学信息最大化
  • 批准号:
    10251080
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
  • 批准号:
    20H02484
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了