Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
基本信息
- 批准号:RGPIN-2018-04371
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General diffusive processes, such as the spread of advantageous genes, the invasion of species, the migration of forest types, the propagation of flames, and the spread of infectious diseases, include both classical diffusive processes and nonlocal dispersal processes, and arise in many scientific areas such as chemistry, chemical engineering, combustion theory, ecology, epidemiology and population biology. Evolutionary equations have been widely used to model and study the evolution of general diffusive processes. Classical studies of evolutionary equations assume the environment is homogeneous in both space and time. However, many general diffusive processes in the real world encounter spatial and temporal fluctuations due to the change of environmental conditions, and such fluctuations have great influences on the persistence and spread of these processes. This motivates the study of evolutionary equations in heterogeneous and random environments. ******The primary goal of the proposed research program is to investigate spatio-temporal dynamics of evolutionary equations in heterogeneous and random environments. The main objectives include:******1. the investigation of the persistence theory, the global dynamics, the spreading properties of propagating solutions, and the existence, stability and qualitative properties of generalized travelling fronts for several important classes of evolutionary equations in heterogeneous or random environments, including reaction-diffusion equations in heterogeneous environments, stepping stone models or stochastic Fisher-Kolmogorov-Petrowsky-Piscunov equations, and integrodifference equations with random coefficients;******2. the study of population persistence under climate change by investigating a class of integrodifference equations subject to climate change described by the location, the velocity and the geometry of a finite favourable habitat, that moves inside the surrounding unfavourable environment.******The proposed research program is expected to advance and enrich the theory of evolutionary equations in heterogeneous and random environments, to introduce new mathematical ideas and methods to study evolutionary equations for more realistic models, and to provide mathematical frameworks and tools for applications in many areas of science and engineering.
一般的扩散过程,如有利基因的传播、物种的入侵、森林类型的迁移、火焰的传播和传染病的传播,既包括经典扩散过程,也包括非局部扩散过程,并出现在许多科学领域。化学、化学工程、燃烧理论、生态学、流行病学和群体生物学等领域。演化方程已被广泛用于模拟和研究一般扩散过程的演化。进化方程的经典研究假设环境在空间和时间上都是同质的。然而,现实世界中许多普遍的扩散过程会因环境条件的变化而遇到空间和时间的波动,而这种波动对这些过程的持续和扩散有很大的影响。这激发了对异质和随机环境中进化方程的研究。 ******所提议的研究计划的主要目标是研究异构和随机环境中进化方程的时空动力学。主要目标包括:*****1.研究异质或随机环境中几类重要演化方程的持久性理论、全局动力学、传播解的扩散特性以及广义行进前沿的存在性、稳定性和定性特性,包括异质中的反应扩散方程环境、踏脚石模型或随机 Fisher-Kolmogorov-Petrowsky-Piscunov 方程,以及具有随机系数的积分差分方程;******2。通过研究一类受气候变化影响的积分差分方程来研究气候变化下的人口持久性,该方程由有限有利栖息地的位置、速度和几何形状描述,该栖息地在周围不利环境中移动。所提出的研究计划有望推进和丰富异质和随机环境中的进化方程理论,引入新的数学思想和方法来研究进化方程以获得更真实的模型,并为许多科学领域的应用提供数学框架和工具和工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shen, Zhongwei其他文献
One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation
随机阻尼正弦-戈登方程的一维随机吸引子和转数
- DOI:
10.1016/j.jde.2009.10.007 - 发表时间:
2010-03 - 期刊:
- 影响因子:2.4
- 作者:
Shen, Wenxian;Zhou, Shengfan;Shen, Zhongwei - 通讯作者:
Shen, Zhongwei
Geometrically Exact Simulation of Inextensible Ribbon
不可延伸带的几何精确模拟
- DOI:
10.1111/cgf.12753 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:2.5
- 作者:
Shen, Zhongwei;Huang, Jin;Bao, Hujun - 通讯作者:
Bao, Hujun
Critical Sets of Elliptic Equations with Rapidly Oscillating Coefficients in Two Dimensions
二维快速振荡系数椭圆方程组临界
- DOI:
10.1007/s10013-023-00632-4 - 发表时间:
2023 - 期刊:
- 影响因子:0.8
- 作者:
Lin, Fanghua;Shen, Zhongwei - 通讯作者:
Shen, Zhongwei
Large-scale Lipschitz estimates for elliptic systems with periodic high-contrast coefficients
具有周期性高对比度系数的椭圆系统的大规模 Lipschitz 估计
- DOI:
10.1080/03605302.2020.1858098 - 发表时间:
2020 - 期刊:
- 影响因子:1.9
- 作者:
Shen, Zhongwei - 通讯作者:
Shen, Zhongwei
Compactness and large-scale regularity for Darcy's law
达西定律的紧致性和大尺度正则性
- DOI:
10.1016/j.matpur.2022.05.019 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shen, Zhongwei - 通讯作者:
Shen, Zhongwei
Shen, Zhongwei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shen, Zhongwei', 18)}}的其他基金
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
- 批准号:
RGPIN-2018-04371 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
- 批准号:
RGPIN-2018-04371 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
- 批准号:
RGPIN-2018-04371 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
- 批准号:
RGPIN-2018-04371 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
- 批准号:
DGECR-2018-00353 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
下托的生长抑素阳性神经元在颞叶癫痫中的作用及环路重构机制研究
- 批准号:82304460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
m6A识别蛋白YTHDC2通过星形胶质细胞LCN2调控IKK/NF-κB/TNFα轴在颞叶癫痫的作用及机制研究
- 批准号:82371463
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
下托投射的胆碱能神经亚群促进颞叶癫痫形成的作用及机制研究
- 批准号:82373859
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
熊果酸通过靶向调控Reelin改善慢性颞叶癫痫和认知损伤的机制研究
- 批准号:82360711
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
- 批准号:
10568586 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Elucidating spatio-temporal nuclear dynamics in 4D using state-of-the-art imaging in beating hearts
使用最先进的跳动心脏成像以 4D 方式阐明时空核动力学
- 批准号:
2888380 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Studentship
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
- 批准号:
10662098 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Spatio-temporal dynamics analysis of cell death induction due to disruption of biometal homeostasis and its application to radiotherapy
生物金属稳态破坏诱导细胞死亡的时空动力学分析及其在放射治疗中的应用
- 批准号:
22H03740 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spatio-temporal dynamics of immune and non-immune islet injury in Type 1 Diabetes
1 型糖尿病免疫和非免疫胰岛损伤的时空动态
- 批准号:
467723 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Operating Grants