Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.

区分传感器故障和系统故障,以及冗余传感器的最佳放置。

基本信息

  • 批准号:
    RGPIN-2018-04702
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Automated Fault Detection and Diagnosis (FDD) systems depend on the reliability of sensor readings. An inconsistency in a sensor's readings under specific operating conditions may not necessarily be a fault in the sensor itself, but a symptom of a more serious fault in the monitored system, and vice versa. Hence, system and sensor faults might manifest themselves with the same symptoms. The ability to identify the exact source of faults is crucial in the monitoring of a system because different corrective actions are required depending on whether the fault is from a sensor or from the system. There is an abundance of literature on fault detection and diagnosis for both sensors and systems individually. Despite the importance of the practical application of diagnostic schemes, distinguishing between sensor and system faults does not appear to have received substantial attention in the monitoring and diagnosis literature. Most current studies and methodologies of detecting faults make one of the following implicit assumptions:*** - Sensors are fully functional, so faults are attributable to the system.*** - The system is fully functional, and faults are attributable to the sensors.***Without knowledge of the system characteristics, the discrepancy of sensor readings from the system model may erroneously be interpreted as potential faults in the monitoring sensors. For instance, if limit checking is used to validate the sensor measurement without some knowledge of the system, the diagnosis might wrongly be taken as a sensor fault. Conversely, a simple sensor fault might be diagnosed as a system fault and trigger unnecessary corrective actions. Using multiple redundant sensors is one way of improving the situation, and it can facilitate distinguishing sensor faults from the system faults. However, cost, physical, and practical constraints limit generous placement of redundant sensors. Although cost is not always an issue, the sensor placement should still be judicious and based on scientific principles to avoid complexity. ******To address this issue, by aiming to identify the minimum degree of sensor redundancy, we have used a priori knowledge of physical relationships between the monitored variables to verify the credibility of the existing sensor observations. Subsequently, we have developed a redundant sensor placement methodology for systems whose variables can be modeled as a serially connected causal network. The generalization of which by deduction has revealed that if the number of sensors (essential and redundant) is greater than 1.5 times the number of monitored variables the task of distinguishing between sensor and system faults can be accomplished with certainty. The proposed research aims to prove the developed method through formal means and extend it for general networks (system block diagrams) with multiple-input and multiple-output without any restriction on the form of interconnections.
自动故障检测和诊断 (FDD) 系统取决于传感器读数的可靠性。 在特定操作条件下传感器读数不一致可能不一定是传感器本身的故障,而是受监控系统中更严重故障的症状,反之亦然。因此,系统和传感器故障可能会表现出相同的症状。识别确切故障源的能力对于系统监控至关重要,因为根据故障是来自传感器还是来自系统,需要采取不同的纠正措施。有大量关于传感器和系统故障检测和诊断的文献。尽管诊断方案的实际应用很重要,但区分传感器和系统故障似乎并未在监测和诊断文献中受到实质性关注。当前检测故障的大多数研究和方法都做出以下隐式假设之一:*** - 传感器功能齐全,因此故障可归因于系统。*** - 系统功能齐全,故障可归因于传感器.***如果不了解系统特性,系统模型中传感器读数的差异可能会被错误地解释为监控传感器中的潜在故障。例如,如果在不了解系统的情况下使用极限检查来验证传感器测量,则诊断可能会被错误地视为传感器故障。相反,简单的传感器故障可能会被诊断为系统故障并触发不必要的纠正措施。使用多个冗余传感器是改善这种情况的一种方法,它可以帮助区分传感器故障和系统故障。然而,成本、物理和实际限制限制了冗余传感器的大量放置。尽管成本并不总是一个问题,但传感器的放置仍然应该明智并基于科学原理,以避免复杂性。 ******为了解决这个问题,通过确定最小程度的传感器冗余,我们使用了监测变量之间的物理关系的先验知识来验证现有传感器观测的可信度。随后,我们为系统开发了一种冗余传感器放置方法,其变量可以建模为串联因果网络。通过推论对其进行概括表明,如果传感器(必要的和冗余的)数量大于监控变量数量的 1.5 倍,则可以确定地完成区分传感器和系统故障的任务。所提出的研究旨在通过形式化手段证明所开发的方法,并将其扩展到具有多输入和多输出的通用网络(系统框图),而对互连形式没有任何限制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sassani, Farrokh其他文献

Intelligent Machining Monitoring Using Sound Signal Processed With the Wavelet Method and a Self-Organizing Neural Network
  • DOI:
    10.1109/lra.2019.2926666
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Nasir, Vahid;Cool, Julie;Sassani, Farrokh
  • 通讯作者:
    Sassani, Farrokh
Deformation Characteristics of Venous Stents: A Comparative Assessment
  • DOI:
    10.1016/j.jvs.2018.06.173
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Hejazi, Masoud;Phani, A. Srikantha;Sassani, Farrokh
  • 通讯作者:
    Sassani, Farrokh
A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges
Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations
Acoustic emission monitoring of sawing process: artificial intelligence approach for optimal sensory feature selection

Sassani, Farrokh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sassani, Farrokh', 18)}}的其他基金

Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
  • 批准号:
    RGPIN-2018-04702
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
  • 批准号:
    RGPIN-2018-04702
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
  • 批准号:
    RGPIN-2018-04702
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
  • 批准号:
    RGPIN-2018-04702
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Designing a biomedical net for heart valve implant
设计用于心脏瓣膜植入的生物医学网络
  • 批准号:
    530660-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Integrated sensor-system monitoring, fault detection and performance recovery
集成传感器系统监控、故障检测和性能恢复
  • 批准号:
    5542-2011
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Vision-based seam tracking and quality assurance for pipe welding
基于视觉的管道焊接焊缝跟踪和质量保证
  • 批准号:
    504786-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Integrated sensor-system monitoring, fault detection and performance recovery
集成传感器系统监控、故障检测和性能恢复
  • 批准号:
    5542-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated sensor-system monitoring, fault detection and performance recovery
集成传感器系统监控、故障检测和性能恢复
  • 批准号:
    5542-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated sensor-system monitoring, fault detection and performance recovery
集成传感器系统监控、故障检测和性能恢复
  • 批准号:
    5542-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于应力波传播特性的大型回转支承轴承单传感器故障定位方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
面向智能船舶传感器故障的深度神经预测自抗扰循迹容错控制方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强干扰下旋转导向钻井工具的传感器故障检测与分离
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强干扰下一类非线性系统的传感器故障诊断及应用验证
  • 批准号:
    62173343
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
考虑无线传感器常见故障的结构损伤在线分布式识别方法研究
  • 批准号:
    52008037
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
  • 批准号:
    RGPIN-2018-04702
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
  • 批准号:
    RGPIN-2018-04702
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
  • 批准号:
    RGPIN-2018-04702
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
  • 批准号:
    RGPIN-2018-04702
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Researches on fault tolerant control against simultaneous sensor and actuator failure to achieve online maintenance
针对传感器和执行器同时故障的容错控制研究,实现在线维护
  • 批准号:
    17K06502
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了