Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
基本信息
- 批准号:RGPIN-2018-04544
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program belongs mainly to the area of arithmetic geometry, i.e., to the area which applies the methods of algebraic geometry to solve problems in number theory. A typical example here is the famous Fermat equation xn + yn = zn, where n > 2. Fermat asserted in 1640 that this equation has no solution in positive integers, i.e., that the sum of two n-th powers can never be an n-th power, if n > 2. This was resolved in 1995 when Wiles, using ideas and results of Frey and Ribet in arithmetic geometry, proved that this assertion is indeed true.*** In studying problems in this area, one is frequently led to the study of the arithmetic and geometry of certain moduli spaces: these are algebraic varieties (such as curves, surfaces, etc.) whose points correspond to isomorphism classes of algebraic objects (e.g. curves). For example, the points of modular curves correspond to isomorphism classes of elliptic curves with extra structure.*** A key technique in the proof of Wiles is to study what are known as Galois representations (attached to elliptic curves) and to relate them to modular forms.*** The aim of this research program is to study the arithmetic and the geometry of the moduli spaces ZN: these are surfaces whose points classify isomorphisms between certain Galois representations of elliptic curves. Of special interest here is to study the curves that lie on these moduli surfaces and to identify those that come from modular curves. In addition, it is of interest to examine the points which lie on the intersection of two such curves. Such points arise from isomorphisms of Galois representations attached to elliptic curves with complex multiplication (CM) and hence are called CM points.*** The moduli space ZN is closely connected with a certain moduli space called a Humbert surface whose points classify curves of genus 2 with an elliptic subcover of degree N. Thus, a main application of the above is to study problems involving Humbert surfaces. For example, the study of the components of the intersection of such Humbert surfaces is a problem that can be treated successfully here.*** One novel technique here is what might be called "Inverse arithmetic geometry." This consists of the systematic usage of methods and results in number theory to derive interesting results about the geometry of certain moduli spaces.*** This research has many applications, not only to number theory and to arithmetic geometry, but also to algebraic geometry (moduli spaces, Humbert schemes), to mathematical physics (Hurwitz spaces, moduli spaces), to dynamical systems (mathematical billiards) and to mirror symmetry.*** In addition, this research proposal involves highly qualified personnel (HQP) of all levels: summer undergraduate students (holding an USRA), graduate students (both M.Sc. and Ph.D. students) and post-doctoral students.
该研究计划主要属于算术几何形状的区域,即应用代数几何方法来解决数量理论中的问题的区域。这里的一个典型例子是著名的费马特方程式xn + yn = Zn,其中n>2。Fermat在1640年断言,该方程在积极的整数中没有解决方案,即两个n-th-th-th-the的总和永远不可能是n-th的力量,如果是n> 2。 ***在研究该领域的问题时,经常导致研究某些模量空间的算术和几何形状:这些是代数品种(例如曲线,表面等),其点对应于代数对象的同构类别(例如曲线)。例如,模块化曲线的点对应于具有额外结构的椭圆曲线的同构类别。在椭圆曲线的某些galois表示之间。这里特别感兴趣的是研究这些模量表面上的曲线,并确定来自模块化曲线的曲线。此外,要检查位于这两条此类曲线的交点上的点是有意义的。 Such points arise from isomorphisms of Galois representations attached to elliptic curves with complex multiplication (CM) and hence are called CM points.*** The moduli space ZN is closely connected with a certain moduli space called a Humbert surface whose points classify curves of genus 2 with an elliptic subcover of degree N. Thus, a main application of the above is to study problems involving Humbert surfaces.例如,对这种洪伯特表面相交的组成部分的研究是一个可以在这里成功处理的问题。这种方法是通过系统使用和数量理论的系统使用,以获取有关某些模量空间几何形状的有趣结果。 ***此外,该研究建议还涉及各个级别的高素质人员(HQP):夏季本科生(持有USRA),研究生(M.Sc和博士学位学生)和博士后生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Kani, Ernst的其他基金
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:RGPIN-2018-04544RGPIN-2018-04544
- 财政年份:2022
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:RGPIN-2018-04544RGPIN-2018-04544
- 财政年份:2021
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:RGPIN-2018-04544RGPIN-2018-04544
- 财政年份:2020
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:RGPIN-2018-04544RGPIN-2018-04544
- 财政年份:2019
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
"Hurwitz spaces, Humbert schemes and modular curves"
“赫尔维茨空间、亨伯特方案和模曲线”
- 批准号:105361-2012105361-2012
- 财政年份:2016
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
"Hurwitz spaces, Humbert schemes and modular curves"
“赫尔维茨空间、亨伯特方案和模曲线”
- 批准号:105361-2012105361-2012
- 财政年份:2015
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
"Hurwitz spaces, Humbert schemes and modular curves"
“赫尔维茨空间、亨伯特方案和模曲线”
- 批准号:105361-2012105361-2012
- 财政年份:2014
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
"Hurwitz spaces, Humbert schemes and modular curves"
“赫尔维茨空间、亨伯特方案和模曲线”
- 批准号:105361-2012105361-2012
- 财政年份:2013
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
"Hurwitz spaces, Humbert schemes and modular curves"
“赫尔维茨空间、亨伯特方案和模曲线”
- 批准号:105361-2012105361-2012
- 财政年份:2012
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
The arithmetic of certain submotives of products of modular curves
模曲线乘积的某些子动机的算法
- 批准号:105361-2006105361-2006
- 财政年份:2010
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
相似国自然基金
基于稀疏空时频表示的低轨导航多径信号参数估计
- 批准号:62303482
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小样本条件下的异质信息网络表示学习与应用
- 批准号:62306322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
图表示学习辅助的精准可信药物推荐研究
- 批准号:62306014
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
认知原理启发的训练仿真系统战场空间表示方法研究
- 批准号:62306329
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动作表示与生成模型及人类反馈强化学习的智能运动教练研究
- 批准号:62373183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Moduli spaces of Galois representations
伽罗瓦表示的模空间
- 批准号:23026192302619
- 财政年份:2023
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:23022842302284
- 财政年份:2023
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Standard GrantStandard Grant
Geometry of moduli stacks of Galois representations
伽罗瓦表示的模栈的几何
- 批准号:23026232302623
- 财政年份:2023
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:23022852302285
- 财政年份:2023
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Standard GrantStandard Grant
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:RGPIN-2018-04544RGPIN-2018-04544
- 财政年份:2022
- 资助金额:$ 1.17万$ 1.17万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual