Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
基本信息
- 批准号:RGPIN-2015-04125
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stochastic modelling in mathematical and computational finance is the focus of the proposed research program. Mathematical and computational finance considers the uncertain future behaviour of financial or economic variables and systems; presents a theory for the valuation and risk management of derivative securities; and provides a quantitative framework for examining various investment, managerial, and regulatory decisions. Various probabilistic models, statistical estimation methods, and computational algorithms which are motivated by financial applications shall be considered. Addressing applied problems in a realistic framework also drives new theoretical research and is the impetus for novel theoretical advances in probability and statistics. The research integrates various aspects of mathematical and computational finance starting with the development of new stochastic models for fundamental financial and economic quantities such as interest rates and asset volatility. We shall develop new pricing and risk management theories methodologies that allow market participants to value and hedge financial derivatives exposed to credit risk. We also plan to study the stochastic equations which characterize these new valuation and risk management methods, deriving explicit solutions where possible but focusing on realistic modelling which requires the creation of new efficient computational algorithms for solving these equations.***The first objective of the proposed research program is the study of forward -backward stochastic differential equations (FBSDEs) and applications in mathematical finance. An FBSDE is a coupled system of stochastic equations with components that evolve forward in time from a specified initial condition and components that evolve backward in time from a random terminal condition. We shall use FBSDEs to characterize a new pricing methodology for credit risk derivatives such as defaultable bonds and extend this method. The second objective is the development of numerical methods for the solution of FBSDEs since the class of FBSDEs with explicit solutions is limited. We shall further develop a new numerical method we created, based on the fast Fourier transform, to higher dimensions. The third objective involves the study of problems in mathematical finance that can be characterized as producing or depending on large amounts of high- dimensional data. Our goal is to extend to financial contexts certain modelling and statistical techniques for high- dimensional data that effectively reduce the dimension to the point that an accurate lower dimensional model can be implemented. Infinite dimensional models of forward interest rate processes shall be the first example considered so that, by reducing the dimension, we can create new parsimonious financial models that preserve the key features of the theoretical model and the observed data.**
数学财务的随机建模是拟议的研究计划的重点。由财务应用激励的算法应促进新的理论研究,这是概率和统计学的新型理论的动力。经济量,诸如大比例的波动。他需要创建新的有效计算算法来解决这些方程式。随机终端条件。较高的尺寸。对数学金融的问题的研究概括为产生或贬低的数据远期利率过程的范围应为最终的示例,以便我们可以创建新的简约的财务模型,即理论模型模型模型模型模型和观察到的数据的关键特征**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyndman, Cody其他文献
Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization
- DOI:
10.3390/risks8020040 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:2.2
- 作者:
Kratsios, Anastasis;Hyndman, Cody - 通讯作者:
Hyndman, Cody
Hyndman, Cody的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyndman, Cody', 18)}}的其他基金
Theory and methods in mathematical and computational finance
数学和计算金融的理论和方法
- 批准号:
RGPIN-2021-04112 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Theory and methods in mathematical and computational finance
数学和计算金融的理论和方法
- 批准号:
RGPIN-2021-04112 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamics in financial modeling
金融建模中的随机动力学
- 批准号:
341777-2010 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamics in financial modeling
金融建模中的随机动力学
- 批准号:
341777-2010 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamics in financial modeling
金融建模中的随机动力学
- 批准号:
341777-2010 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamics in financial modeling
金融建模中的随机动力学
- 批准号:
341777-2010 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
几何造型与机器学习融合的图像数据拟合问题研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
- 批准号:72271252
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
盾构主轴承激光微造型协同相变硬化的抗疲劳机理及主动设计
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mathematical modelling of mammalian pigmentation patterns: Stochastic modelling of melanoblast neural crest cells.
哺乳动物色素沉着模式的数学建模:成黑细胞神经嵴细胞的随机建模。
- 批准号:
2282147 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Studentship
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Mathematical modelling of the emergence and spread of antibiotic resistant bacteria in healthcare settings: a stochastic approach
医疗机构中抗生素耐药细菌的出现和传播的数学模型:随机方法
- 批准号:
MR/N014855/1 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Fellowship