Deep learning-based intelligent fault diagnosis and prognosis of rotating machinery in an automated food production line**

基于深度学习的自动化食品生产线旋转机械智能故障诊断与预测**

基本信息

  • 批准号:
    535457-2018
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The Canadian company Vancouver Freeze Dry Ltd. manufactures various types of freeze dry food items including fruits, vegetables, dairy products, and nutraceutical ingredients. The products are available in most supermarkets and retail stores. They are also being exported after meeting the Canadian demand. To meet the stiff global competition and economic challenges, the company plans to increase the productivity while maintaining high standards of product quality and operation safety. The unexpected failures of the rotating components in the automated production line have decreased the productivity and caused safety concerns. The proposed research will develop and implement mechatronic technologies that will solve this problem. Specifically, the project will develop an improved machine condition monitoring system with suitable sensing, signal processing, fault classification and prediction technologies. The underlying challenges include the various machinery faults and operation conditions; the complexity and even infeasibility of analytical modeling of the machine degradation processes; data preprocessing with sensing errors and noise; deep neural network model construction and training with small data sets; and real-time detection and prediction in online monitoring. Planned research activities will overcome these challenges. In particular, intelligent end-to-end learning of deep neural networks will address modeling problems; intelligent sensor fusion will address precision and reliability of sensory information, with improved robustness; convolutional neural networks, recurrent neural network structures, and transfer learning with shared model parameters will solve the problems of training with small data sets; and graphical processing unit (GPU)-based processing will overcome the computing speed problem for real-time application. The project outcomes will include a sensing system including multiple sensors and data acquisition devices, improved fault diagnosis and prognosis models, experimental verification, and technology transfer. The resulting economic advantage for the Canadian industry will be significant.
加拿大公司Vancouver Freeze Dry Ltd. 生产各种类型的冻干食品,包括水果、蔬菜、乳制品和营养保健品成分。这些产品在大多数超市和零售店都有售。在满足加拿大的需求后,它们也被出口。为了应对激烈的全球竞争和经济挑战,该公司计划提高生产力,同时保持产品质量和运营安全的高标准。自动化生产线中旋转部件的意外故障降低了生产率并引起安全问题。拟议的研究将开发和实施机电一体化技术来解决这个问题。具体来说,该项目将开发一种改进的机器状态监测系统,采用合适的传感、信号处理、故障分类和预测技术。潜在的挑战包括各种机械故障和运行条件;机器退化过程分析建模的复杂性甚至不可行性;具有传感误差和噪声的数据预处理;小数据集深度神经网络模型构建与训练;以及在线监测的实时检测和预测。计划中的研究活动将克服这些挑战。特别是深度神经网络的智能端到端学习将解决建模问题;智能传感器融合将解决传感信息的精确性和可靠性问题,并提高鲁棒性;卷积神经网络、循环神经网络结构以及共享模型参数的迁移学习将解决小数据集训练的问题;基于图形处理单元(GPU)的处理将克服实时应用的计算速度问题。该项目成果将包括包括多个传感器和数据采集设备的传感系统、改进的故障诊断和预测模型、实验验证和技术转让。由此给加拿大工业带来的经济优势将是巨大的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DeSilva, Clarence其他文献

DeSilva, Clarence的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DeSilva, Clarence', 18)}}的其他基金

Dynamic and Self-adaptive Multi-agent Network for Optimal Operation of Engineering Processes
用于工程过程优化运行的动态自适应多智能体网络
  • 批准号:
    RGPIN-2017-04456
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Research in sensory information technologies and implementation in sleep disorder monitoring
感觉信息技术研究及其在睡眠障碍监测中的应用
  • 批准号:
    493908-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Projects - Group
Research in sensory information technologies and implementation in sleep disorder monitoring
感觉信息技术研究及其在睡眠障碍监测中的应用
  • 批准号:
    493908-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Projects - Group
Re-engineering of the Design Process of Automated Industrial Machinery through Multi-domain Hierarchical Optimization and Controller Performance
通过多域分层优化和控制器性能重新设计自动化工业机械的设计流程
  • 批准号:
    121681-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Research in sensory information technologies and implementation in sleep disorder monitoring
感觉信息技术研究及其在睡眠障碍监测中的应用
  • 批准号:
    493908-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Projects - Group
Re-engineering of the Design Process of Automated Industrial Machinery through Multi-domain Hierarchical Optimization and Controller Performance
通过多域分层优化和控制器性能重新设计自动化工业机械的设计流程
  • 批准号:
    121681-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Re-engineering of the Design Process of Automated Industrial Machinery through Multi-domain Hierarchical Optimization and Controller Performance
通过多域分层优化和控制器性能重新设计自动化工业机械的设计流程
  • 批准号:
    121681-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Re-engineering of the Design Process of Automated Industrial Machinery through Multi-domain Hierarchical Optimization and Controller Performance
通过多域分层优化和控制器性能重新设计自动化工业机械的设计流程
  • 批准号:
    121681-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Re-engineering of the Design Process of Automated Industrial Machinery through Multi-domain Hierarchical Optimization and Controller Performance
通过多域分层优化和控制器性能重新设计自动化工业机械的设计流程
  • 批准号:
    121681-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Innovative mechatronic research and development of a high-speed high-quality resistance welding system for wire laths
创新机电一体化研发线材车床高速高质量电阻焊系统
  • 批准号:
    429901-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program

相似国自然基金

基于数物融合深度学习的深大基坑施工灾变风险在线预测与防控研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的深地叠前时空域地震子波提取方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于三支决策和强化学习的深空探测器非预期故障自主诊断与系统重构研究
  • 批准号:
    61903015
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
  • 批准号:
    EP/Y028252/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
  • 批准号:
    23K04201
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
  • 批准号:
    23K11102
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了