High-dimensional problems for spatial point processes

空间点过程的高维问题

基本信息

  • 批准号:
    RGPIN-2017-05257
  • 负责人:
  • 金额:
    $ 3.13万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Nowadays, new technologies allow, on the one hand, the acquisition of an increasing mass of data and on the other hand the observation of more and more complex phenomena. Statistics and in particular the sub-branch of spatial statistics does not avoid these questions. The present research program intends to consider high-dimensional problems for one specific class of spatial models which is the class of (spatial) point processes.******Context***Point processes model random sets of points or events in interaction. Point patterns arise in a broad range of fields. When the observation domain, say S, corresponds to a subset of Rd (with the dimension d=2,3), such processes can model for instance galaxies in astrophysics, hundreds of trees species in forestry, sources of outbreak of a disease in epidemiology, ocular fixations from different individuals watching images or videos in vision, etc. Classical questions are about the modelling of the dependency between point patterns (are two trees species independent?) and/or to relate the distribution of points to extra information like the altitude map, soil nature, for forestry applications. Many statistical methodologies exist in the literature, however very few things are known when many point patterns are simultaneously observed and/or when the amount of extra information is important. How to extract information, to efficiently select covariates are the implicit questions. Very recently, when the dimension of S is large (think of a unit cube [0,1]d with d=50), point processes have appeared in computer experiments to construct random designs and when S is a discrete space they have emerged in machine learning, compressed sensing as an efficient tool for subsampling a possibly high-dimensional dataset. To illustrate one of of the questions an expected feature for a sample of points derived from a stochastic model is to "nicely" cover the unit cube, which can be achieved if the pattern exhibits some kind of regularity. But it is still an open question to have a simple model which satisfies also this kind of regularity when the same sample of points is projected on any subspace of the unit cube, a property that classical experimental designs like Latin hypercubes are able to handle.******Objective***The goal of this research program is to bring modern questions induced by the high-dimension feature to the relatively recent class of point processes models, which arises in an increasing number of applications. By the nature of these two research areas, this research program is modern and innovative. Problems will be investigated both from a theoretical point of view by providing the statistics community new methodologies and results to understand their limitations and from a practical/computational point of view by providing practitioners with a systematic implementation of the developed methodologies within the (free) R software.
如今,新技术一方面可以获取越来越多的数据,另一方面可以观察越来越复杂的现象。统计学,特别是空间统计学的分支并没有回避这些问题。目前的研究计划旨在考虑一类特定空间模型的高维问题,即(空间)点过程类。******上下文***点过程对交互中的点或事件的随机集进行建模。点模式出现在广泛的领域中。当观测域(例如 S)对应于 Rd 的子集(维度 d=2,3)时,此类过程可以模拟天体物理学中的星系、林业中的数百种树木、流行病学中的疾病爆发源、不同个体在视觉中观看图像或视频时的注视点等。经典问题是关于点模式之间的依赖性建模(两种树种独立吗?)和/或将点的分布与海拔等额外信息联系起来地图,土壤性质,用于林业应用。文献中存在许多统计方法,但是当同时观察许多点模式和/或当额外信息量很重要时,我们知道的事情很少。如何提取信息,有效选择协变量是隐含的问题。最近,当 S 的维度很大时(想象一个单位立方体 [0,1]d,d=50),点过程出现在计算机实验中以构建随机设计,当 S 是离散空间时,它们出现在机器学习、压缩感知作为对可能的高维数据集进行二次采样的有效工具。为了说明问题之一,从随机模型导出的点样本的预期特征是“很好地”覆盖单位立方体,如果模式表现出某种规律性,则可以实现这一点。但是,当相同的点样本投影到单位立方体的任何子空间上时,是否有一个简单的模型也满足这种规律性仍然是一个悬而未决的问题,这是拉丁超立方体等经典实验设计能够处理的属性。* *****目标***本研究计划的目标是将高维特征引发的现代问题引入相对较新的点过程模型类别,这些模型在越来越多的应用中出现。根据这两个研究领域的性质,该研究项目是现代且创新的。将从理论的角度来研究问题,为统计界提供新的方法和结果以了解其局限性,并从实践/计算的角度来研究问题,为从业者提供(免费)R 内开发的方法的系统实施。软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Coeurjolly, JeanFrançois其他文献

Coeurjolly, JeanFrançois的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Coeurjolly, JeanFrançois', 18)}}的其他基金

High-dimensional problems for spatial point processes
空间点过程的高维问题
  • 批准号:
    RGPIN-2017-05257
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional problems for spatial point processes
空间点过程的高维问题
  • 批准号:
    RGPIN-2017-05257
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional problems for spatial point processes
空间点过程的高维问题
  • 批准号:
    507945-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
High-dimensional problems for spatial point processes
空间点过程的高维问题
  • 批准号:
    RGPIN-2017-05257
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Banach空间中关于变分不等式问题的外梯度迭代算法研究
  • 批准号:
    12301159
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具空间结构非线性边界问题的动力学研究
  • 批准号:
    12301196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主学习的大规模多目标优化问题搜索空间缩减策略研究
  • 批准号:
    62362056
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
不定内积空间中伪Jacobi矩阵特征值反问题的数值解法研究
  • 批准号:
    12301484
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辅助高维空间量子信息处理的若干优化问题研究
  • 批准号:
    62371038
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

High-dimensional problems for spatial point processes
空间点过程的高维问题
  • 批准号:
    RGPIN-2017-05257
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional problems for spatial point processes
空间点过程的高维问题
  • 批准号:
    RGPIN-2017-05257
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimensional problems for spatial point processes
空间点过程的高维问题
  • 批准号:
    507945-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
High-dimensional problems for spatial point processes
空间点过程的高维问题
  • 批准号:
    507945-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
High-dimensional problems for spatial point processes
空间点过程的高维问题
  • 批准号:
    RGPIN-2017-05257
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了