Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
基本信息
- 批准号:RGPIN-2018-05826
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is an increasing demand on the aerospace and automotive industries to reduce weight, fuel consumption and emission of greenhouse gases by using lightweight materials such as Magnesium (Mg) and Aluminum (Al). Also, lightweight materials, that are resistant to shock loading, are needed in protective vehicles and personnel armour to prevent injury. Magnesium (Mg) is the lightest metal and Mg alloys are desired for lightweight applications due to their low density (~1738 kg/m3, ~35% < Al). However, Mg alloys exhibit poor formability, moderate strength and limited ductility due to their hexagonal close-packed crystal structure. ******Ultrafine-grained (UFG) materials (grain sizes ~≤ 1000 nm) possess unique microstructure-dependent properties superior to coarse-grained materials. They are produced through grain refinement and have enhanced properties such as high strength and fracture toughness. Severe Plastic Deformation (SPD) techniques such as high pressure torsion can be used to produce bulk UFG Mg alloys with exceptional strength, fracture toughness and ductility. During SPD, very high strains (true strain ≥1) are imposed on a bulk material leading to exceptional grain refinement without significant change to the overall dimensions of the material. Also, large amounts of lattice defects such as grain boundaries and dislocations are formed that improve the deformation behavior of the materials.******This research implements a synergistic approach involving the development and comprehensive physical, mechanical and microstructural characterization of UFG Mg alloys. Bulk UFG Mg alloys will be developed and mechanisms that occur during the evolution of ultrafine grains and lattice defect structures in the alloys will be studied. The mechanism/s that occur during grain refinement, their effect on the evolved microstructure and optimum processing conditions will also be studied. The dynamic mechanical properties, deformation behavior and mechanism of damage of UFG Mg alloys will be characterized at intermediate (≥10-100 /s) to high strain rates (≥1000 /s). Mechanisms that govern damage accumulation including the sequence of events that occur during strain localization and formation of ASBs will be studied. Constitutive equations and material parameters to accurately describe the properties and dynamic deformation behavior of the UFG Mg alloys will be developed.******The comprehensive experimental data, constitutive equations and predictive computational models will be invaluable in tailoring the properties of lightweight materials and form the basis for future innovative developments in lightweight technologies. In addition, this research will train highly qualified personnel with exceptional skills in material processing and characterization including electron microscopy and computational modeling currently needed by employers in the automotive and aerospace industries.
航空航天和汽车行业越来越需要使用镁 (Mg) 和铝 (Al) 等轻质材料来减轻重量、降低燃料消耗和温室气体排放。防护车辆和人员装甲需要镁 (Mg) 来防止受伤。镁 (Mg) 是最轻的金属,而镁合金由于密度低(~1738 kg/m3,~35% <)而适合轻量化应用。然而,镁合金由于其六方密排晶体结构而表现出较差的成形性、中等强度和有限的延展性******超细晶粒(UFG)材料(晶粒尺寸〜≤1000 nm)具有独特的微观结构。它们是通过晶粒细化生产的,并且具有高强度和断裂韧性(SPD)技术(例如高压)的增强特性。扭转可用于生产具有优异强度、断裂韧性和延展性的块状 UFG 镁合金。在 SPD 过程中,会对块状材料施加非常高的应变(真实应变≥1),从而导致晶粒异常细化,而不会显着改变整体尺寸。此外,还会形成大量的晶格缺陷,例如晶界和位错,从而改善材料的变形行为。******这项研究采用了一种涉及物理、机械和综合开发的协同方法。将开发块状 UFG 镁合金的微观结构特征,并研究合金中超细晶粒和晶格缺陷结构演化过程中发生的机制及其对演化的影响。还将研究 UFG 镁合金在中应变(≥10-100 /s)至高应变下的动态力学性能、变形行为和损伤机制。将研究控制损伤累积的机制,包括应变局部化和 ASB 形成过程中发生的事件序列,以准确描述 UFG 镁合金的性能和动态变形行为。 *****全面的实验数据、本构方程和预测计算模型对于定制轻质材料的性能将具有无价的价值,并为未来轻质技术的创新发展奠定基础。培养在材料加工和表征方面具有特殊技能的高素质人才,包括汽车和航空航天行业雇主当前所需的电子显微镜和计算建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BoakyeYiadom, Solomon其他文献
BoakyeYiadom, Solomon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BoakyeYiadom, Solomon', 18)}}的其他基金
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
RGPIN-2018-05826 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
RGPIN-2018-05826 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
RGPIN-2018-05826 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Effects of Asperities on Stiction and Its Transition to Dynamic Friction in Automotive Latch Parts
汽车闩锁零件中粗糙度对静摩擦力的影响及其向动态摩擦的转变
- 批准号:
543789-2019 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
RGPIN-2018-05826 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
DGECR-2018-00148 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Launch Supplement
Dynamic Characterisation of Metal-Based Additive Manufactured Complex Parts
金属基增材制造复杂零件的动态表征
- 批准号:
471351-2015 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Postdoctoral Fellowships
相似国自然基金
稀土掺杂钙钛矿纳米材料量子剪裁发光中的材料设计、机理研究与光伏应用
- 批准号:12374379
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于芳香胺分子剪裁的手性钙钛矿量子点及其高效圆偏振发光特性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热助推泵浦波导Nd:MgO:APLN增益剪裁调控四波长中红外自变频激光器
- 批准号:62275031
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于超材料的可变形机翼蒙皮气动弹性剪裁方法与实验研究
- 批准号:52202430
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于偏振调控/能带剪裁的高效AlGaN基深紫外LED的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
RGPIN-2018-05826 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
RGPIN-2018-05826 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
RGPIN-2018-05826 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
RGPIN-2018-05826 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
- 批准号:
DGECR-2018-00148 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Launch Supplement