Innovation in Materials Processing using Synthesis and Generalization of Multiphysics, Multicoupled Systems
利用多物理场、多耦合系统的综合和推广进行材料加工创新
基本信息
- 批准号:RGPIN-2014-04892
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ultimate goal of this Discovery program is to greatly accelerate the innovation cycle for all materials processes. In the short term, the focus will be on arc welding and on the creation of mathematical tools to study multiphysics, multicoupled processes. It is generally agreed that innovation and design in materials process is hindered by the broad gap between scientific understanding of materials processes and its engineering application. The proposed Discovery program aims at bridging this gap by developing accurate, general, computationally efficient models and design rules for materials processes. These models and design rules will be based on advanced, cross-disciplinary mathematical methodologies and intense experimentation. The methodologies developed will be of direct help in relating processing, structure, and properties to each other at a quantitative level. The radically new tools and knowledge developed will enable proper materials process engineering treatment instead of the current approach of trial and error. This work is expected to be of much influence to practitioners, but the foundations to arrive to the results are beyond industry’s mandate and abilities.The work to be carried out leverages and expands on the tools developed during the previous round of Discovery funding, activities that have been published and received important international awards and recognition. The education objective of this program is to expose future HQP to real-life processes that are very difficult to idealize, and to teach them to distill the essential features of these processes to make quantitative predictions. HQP will also be exposed to state of the art scientific equipment and software, and full-scale production equipment.The advanced methodologies to be employed consist of a combination of numerical modeling and experimental measurements within the framework of scaling techniques. The Canadian Centre for Welding and Joining already counts with all necessary software and experimental facilities to develop the methodologies proposed. The implementation and development of scaling techniques is a distinguishing aspect of this proposal, and is especially suitable to addresses the complex nature of materials processing, particularly welding. Scaling is a proven technique for the synthesis, generalization, and extrapolation of knowledge across systems in physics, applied mathematics, and many engineering disciplines. Judging by the impact of Scaling on those other disciplines, its application to the field of materials science and engineering holds enormous potential. Scaling results are useful at the conceptual stage in the design process, as real-time models in control systems, and as benchmarks of numerical models and experiments.The impact of the proposed studies on multicoupled, multiphysics, non-equilibrium problems can be very large. Welding in particular is essential for the manufacturing industry and for the exploitation of Canada’s vast natural resources. The methodologies to be developed are useful beyond welding, and through existing collaborations, (both academic and with industry) it is expected that they will benefit many materials processes. Scaling techniques are useful beyond materials processing and engineering in general, reaching physics, applied mathematics, biology (where the resulting scaling laws are called "allometric laws"), and operations management. The applications of the scaling methodologies developed in this proposed work will trickle down to those other areas through interdisciplinary collaborations. The proposed research program will be synergistic with other current and future more narrowly defined projects in which scientific understanding is required for a particular materials process.
该发现计划的最终目标是大大加快所有材料工艺的创新周期。人们普遍认为,短期内,重点将放在电弧焊和创建数学工具上,以研究多物理场、多耦合工艺。对材料过程的科学理解与其工程应用之间的巨大差距阻碍了材料过程的创新和设计,拟议的发现计划旨在通过开发准确、通用、计算高效的材料过程模型和设计规则来弥补这一差距。设计规则将是基于先进的跨学科数学方法和深入的实验,开发的方法将直接帮助在定量水平上将加工、结构和属性相互关联起来。开发的全新工具和知识将使正确的材料加工工程成为可能。这项工作预计会对从业者产生很大的影响,但获得结果的基础超出了行业的授权和能力。要开展的工作利用并扩展了工具。在上一轮发现融资期间开发的,该计划的教育目标是让未来的 HQP 接触很难理想化的现实生活流程,并教他们提炼这些流程的基本特征,以实现这些流程。 HQP 还将使用最先进的科学设备和软件以及全尺寸生产设备。所采用的先进定量方法包括在缩放技术框架内结合数值建模和实验测量。焊接和连接中心已经开发所提出的方法所需的所有必要的软件和实验设施。缩放技术的实施和开发是该提案的一个显着方面,并且特别适合解决材料加工的复杂性,特别是缩放是一种经过验证的技术。跨物理、应用数学和许多工程学科的知识的综合、概括和外推从缩放对其他学科的影响来看,它在材料科学和工程领域的应用具有巨大的潜力。在设计过程中的概念阶段,作为控制系统中的实时模型,以及数值模型和实验的基准。所提出的研究对多耦合、多物理场、非平衡问题的影响可能非常大。对于制造业和加拿大丰富的自然资源的开发至关重要,所开发的方法不仅适用于焊接,而且通过现有的合作(学术界和工业界),预计它们将使许多材料工艺受益。缩放技术的用途超出了一般的材料加工和工程,涉及物理学、应用数学、生物学(其中所得到的缩放定律被称为“异速生长定律”)和操作管理。在这项提议的工作中开发的缩放方法的应用将会不断涌现。通过跨学科合作,拟议的研究计划将与其他当前和未来更狭义的项目产生协同作用,在这些项目中,特定材料过程需要科学理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mendez, Patricio其他文献
Liver Transplantation without Perioperative Transfusions Single-Center Experience Showing Better Early Outcome and Shorter Hospital Stay
- DOI:
10.1155/2013/649209 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:2.5
- 作者:
Goldaracena, Nicolas;Mendez, Patricio;McCormack, Lucas - 通讯作者:
McCormack, Lucas
Rectus sheath hematoma: conservative, endovascular or surgical treatment? A single-center artificial neural network analysis
- DOI:
10.1007/s00068-021-01854-2 - 发表时间:
2022-01-15 - 期刊:
- 影响因子:2.1
- 作者:
Angeramo, Cristian A.;Mendez, Patricio;Schlottmann, Francisco - 通讯作者:
Schlottmann, Francisco
Mendez, Patricio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mendez, Patricio', 18)}}的其他基金
Discovery of Governing Laws in Real Multiphysics, Multicoupled Systems in Materials Processing
发现材料加工中真实多物理场、多耦合系统的控制定律
- 批准号:
RGPIN-2019-05981 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Discovery of Governing Laws in Real Multiphysics, Multicoupled Systems in Materials Processing
发现材料加工中真实多物理场、多耦合系统的控制定律
- 批准号:
RGPIN-2019-05981 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Structure-Processing Relationships for Welding New Steels with Small Alloying Additions
焊接添加少量合金的新钢的组织-加工关系
- 批准号:
544277-2019 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Discovery of Governing Laws in Real Multiphysics, Multicoupled Systems in Materials Processing
发现材料加工中真实多物理场、多耦合系统的控制定律
- 批准号:
RGPIN-2019-05981 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Discovery of Governing Laws in Real Multiphysics, Multicoupled Systems in Materials Processing
发现材料加工中真实多物理场、多耦合系统的控制定律
- 批准号:
RGPIN-2019-05981 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Structure-Processing Relationships for Welding New Steels with Small Alloying Additions
焊接添加少量合金的新钢的组织-加工关系
- 批准号:
544277-2019 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Mechanical and metallurgical implications of non-ideal geometry in circumferential pipeline welds
圆周管道焊缝中非理想几何形状的机械和冶金影响
- 批准号:
507483-2016 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Innovation in Materials Processing using Synthesis and Generalization of Multiphysics, Multicoupled Systems
利用多物理场、多耦合系统的综合和推广进行材料加工创新
- 批准号:
RGPIN-2014-04892 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Mechanical and metallurgical implications of non-ideal geometry in circumferential pipeline welds
圆周管道焊缝中非理想几何形状的机械和冶金影响
- 批准号:
507483-2016 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Heat and mass transfer aspects of laser deposition of Ni/WC wear resistant metal matrix composites
激光沉积 Ni/WC 耐磨金属基复合材料的传热传质
- 批准号:
462535-2013 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
钛铝合金激光辅助加热作用下切削区材料力学行为演化机理及加工性调控
- 批准号:52305505
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于原位聚合的生物基PA4复合材料设计及其热加工、增韧与阻燃化研究
- 批准号:52303124
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多场多尺度仿真的晶体材料微铣削深度神经网络建模及加工性能预测
- 批准号:52305481
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多晶脆性材料激光辅助滚压改性与低损伤加工方法研究
- 批准号:52305451
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集可视化成像和抗菌功能的高分子复合材料构建、加工及医用性能研究
- 批准号:52373049
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Advancing Medical Illustration in Patient Education Materials: from Art to Science
推进患者教育材料中的医学插图:从艺术到科学
- 批准号:
10660634 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Mineral Coated Microparticles for Stabilization and Delivery of Complexed mRNA for Healing of Long Bone Defects
用于稳定和递送复合 mRNA 的矿物涂层微粒,用于治疗长骨缺损
- 批准号:
10464358 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
High-throughput Single Cell Co-assay of Histone Modifications andTranscriptome
组蛋白修饰和转录组的高通量单细胞联合分析
- 批准号:
10698374 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Ice-free vitrification and nanowarming of meniscal grafts for transplantation
用于移植的半月板移植物的无冰玻璃化和纳米加温
- 批准号:
10819333 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别: