System Architectures and Power Electronic Converter Topologies Enabling Flexible AC/DC Power Networks

系统架构和电力电子转换器拓扑实现灵活的交流/直流电力网络

基本信息

  • 批准号:
    RGPIN-2014-04128
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The deployment and advancement of electrical power systems over the past century has enabled an exponential growth in global GDP and in the living standards of the entire developed world. Electrical power transmission and distribution (T&D), be it large scale or small, enables the movement of power from supply to load. In 2012 the global T&D equipment market size was estimated at $131 billion. Today, with the explosive growth in renewable energy production and the pressures to enhance energy efficiencies, the importance of integrating renewables and energy storage into utility networks are forcing a re-evaluation of the design paradigms that have driven T&D technology development over the past several decades.Recently, use of DC networks for collection, transmission and distribution of power have become a viable alternative to AC networks, offering promise for enhanced efficiency, enhanced controllability and, in a growing number of applications, reduced cost. Most existing end consumers however, will remain reliant on AC distribution networks for decades to come, inevitably leading to the emerging dominance of mixed or ‘hybrid’ AC/DC power networks. The proposed research focuses on the development of future hybrid AC/DC power network architectures to achieve system efficiency enhancement, cost reduction and, most importantly, to leverage the control versatility offered by the power electronic building blocks that make up AC-to-DC and DC-to-DC power conversion units. Through exploitation of this control versatility, the large-scale integration of renewable energy sources and energy storage devices may be realized. To facilitate new system architectures that best exploit the benefits of both AC and DC networks, the development of new converter topologies is necessary. These system architectures and conversion topologies will form the power-side infrastructure required to realize the “smart grid” vision as applied to power collection, transmission and distribution. Control of these converter topologies and system architectures are an integral part of the research.The work will exploit recent advances made in the development of modular multi-input/multi-output converter topologies, invented at the University of Toronto, that enable the formation of converter topologies that serve multiple functions. These power electronic topologies not only facilitate the transfer of energy from AC to DC or from one DC voltage level to another, but they also enable a multitude of DC energy sources (be they batteries, solar PV panels or other sources) or loads to be simultaneously integrated directly into the AC and DC networks. Such approaches allow the elimination of unnecessary power conversion stages, driving up efficiency and driving down cost. “New architectures” for the power system will be directly enabled by, and linked to, the power electronic topologies that are developed.The urgency of this work is demonstrated around the globe by the ever growing power transmission constraints, power interruptions and power quality problems that are arising as a result of a non-systematic approach to renewable energy integration into the T&D systems of the past generation. For a further demonstration of this urgency one need only look at the new integrated “Solar PV – energy storage” systems market, which is expect to grow from $200 Million in 2012 to $17 Billion by 2017. It is imperative that Canada participates in this technological revolution, which is reshaping the landscape of electric power engineering. The proposed research will enable the training of 5 MASc graduates, 5 PhD graduates, in addition to the training of numerous MEng students, summer students and BASc thesis students within this critical area.
过去一个世纪电力系统的部署和进步使全球 GDP 和整个发达国家的生活水平呈指数增长,无论规模大小,电力传输和分配 (T&D) 都促进了这一运动。 2012 年,全球输配电设备市场规模估计为 1,310 亿美元。如今,随着可再生能源生产的爆炸性增长以及提高能源效率的压力,将可再生能源和能源存储整合到公用事业网络中的重要性。正在迫使人们重新评估过去几十年来推动输配电技术发展的设计范式。最近,使用直流网络进行电力收集、传输和分配已成为交流网络的可行替代方案,为提高效率提供了希望然而,在越来越多的应用中,增强的可控性以及降低的成本在未来几十年内大多数现有终端消费者仍将依赖交流配电网络,这不可避免地导致混合或“混合”交流/直流电力网络的新兴主导地位。 .拟定研究重点开发未来混合交流/直流电力网络架构,以实现系统效率提高、成本降低,最重要的是,利用构成交流到直流和直流到-的电力电子构建模块提供的控制多功能性直流电源转换单元。通过利用这种控制多功能性,可以实现可再生能源和储能设备的大规模集成,以促进最好地利用交流和直流网络优势的新系统架构,开发新的系统。这些系统架构和转换器拓扑是必要的。转换拓扑将构成实现“智能电网”愿景所需的电力侧基础设施,应用于电力收集、传输和分配。对这些转换器拓扑和系统架构的控制是研究的一个组成部分。这项工作将利用最新进展。多伦多大学发明的模块化多输入/多输出转换器拓扑结构的开发使之能够形成具有多种功能的转换器拓扑结构,这些电力电子拓扑结构不仅有助于将能量从交流电传输到直流电。或来自一个直流电压电平另一个,但它们还可以将多种直流能源(无论是电池、太阳能光伏板还是其他能源)或负载同时直接集成到交流和直流网络中,这样的方法可以消除不必要的功率转换阶段,电力系统的“新架构”将直接由已开发的电力电子拓扑实现并与之相关,从而提高效率并降低成本。全球范围内不断增长的电力传输证明了这项工作的紧迫性。由此产生的限制、电力中断和电能质量问题为了进一步证明这种紧迫性,我们只需看看新的集成“太阳能光伏-储能”系统市场,该市场预计将增长。 2012 年为 2 亿加元,到 2017 年将达到 170 亿加元。加拿大势在必行地参与这一拟议的技术革命,这场革命正在重塑电力工程的格局。这项研究将能够培训 5 名硕士毕业生, 5 名博士毕业生,此外还培训了该关键领域的众多工程硕士生、暑期学生和学士学位论文学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lehn, Peter其他文献

Lehn, Peter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lehn, Peter', 18)}}的其他基金

Towards Power Electronic Centric Power Systems
迈向以电力电子为中心的电力系统
  • 批准号:
    RGPIN-2019-06453
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Power Electronic Centric Power Systems
迈向以电力电子为中心的电力系统
  • 批准号:
    RGPIN-2019-06453
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High efficiency electric vehicle drivetrains with integrated fast-charging and dual storage media
具有集成快速充电和双存储介质的高效电动汽车传动系统
  • 批准号:
    513206-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
Towards Power Electronic Centric Power Systems
迈向以电力电子为中心的电力系统
  • 批准号:
    RGPIN-2019-06453
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High efficiency electric vehicle drivetrains with integrated fast-charging and dual storage media
具有集成快速充电和双存储介质的高效电动汽车传动系统
  • 批准号:
    513206-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
Towards Power Electronic Centric Power Systems
迈向以电力电子为中心的电力系统
  • 批准号:
    RGPIN-2019-06453
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High efficiency electric vehicle drivetrains with integrated fast-charging and dual storage media
具有集成快速充电和双存储介质的高效电动汽车传动系统
  • 批准号:
    513206-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
System Architectures and Power Electronic Converter Topologies Enabling Flexible AC/DC Power Networks
系统架构和电力电子转换器拓扑实现灵活的交流/直流电力网络
  • 批准号:
    RGPIN-2014-04128
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
High efficiency electric vehicle drivetrains with integrated fast-charging and dual storage media
具有集成快速充电和双存储介质的高效电动汽车传动系统
  • 批准号:
    513206-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
High efficiency electric vehicle drivetrains with integrated fast-charging and dual storage media
具有集成快速充电和双存储介质的高效电动汽车传动系统
  • 批准号:
    513206-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

面向资源受限嵌入式系统的深度神经网络优化和软硬件架构协同探索
  • 批准号:
    62372183
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
淀粉晶域多维组织架构定向调控机制及营养功能特性评价
  • 批准号:
    32301986
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
逐级响应释放免疫支架构建及其介导免疫代谢重编程在慢性伤口中的作用和机制研究
  • 批准号:
    32371387
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“点-轴系统”理论与“T”字型架构的提出及其体系化研究
  • 批准号:
    42371193
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Fundamentals of Modeling and Control for the Evolving Electric Power System Architectures
EAGER:不断发展的电力系统架构的建模和控制基础知识
  • 批准号:
    2002570
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
A framework for developing translatable intelligent neural interface systems for precision neuromodulation therapies
开发用于精准神经调节治疗的可翻译智能神经接口系统的框架
  • 批准号:
    10005329
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
A framework for developing translatable intelligent neural interface systems for precision neuromodulation therapies
开发用于精准神经调节治疗的可翻译智能神经接口系统的框架
  • 批准号:
    10689651
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
System Architectures and Power Electronic Converter Topologies Enabling Flexible AC/DC Power Networks
系统架构和电力电子转换器拓扑实现灵活的交流/直流电力网络
  • 批准号:
    RGPIN-2014-04128
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
CRII: CSR: End-to-End Approach to Ultra-Low Power IoT: From New Nanotechnologies to New System Architectures
CRII:CSR:超低功耗物联网的端到端方法:从新纳米技术到新系统架构
  • 批准号:
    1657303
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了