Adaptive Signal Modeling and Feature Extraction Methods for Analyzing Cardiac Fibrillation

用于分析心颤的自适应信号建模和特征提取方法

基本信息

  • 批准号:
    RGPIN-2015-06644
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The heart is a fascinating and complexly designed vital organ with electro mechanical functionalities that beats (i.e. expands and contracts) rhythmically to maintain blood circulation throughout the lifetime of a living being. When this rhythm gets disturbed or the heart goes into arrhythmic contractions and expansions for a multitude of pathophysiological reasons, it may result in life threatening medical conditions. These rhythmic disorders can result in cardiac arrhythmias, which can seriously affect cardiac output (or blood flow). Ventricular fibrillation (VF) is an arrhythmia that originates from the lower chambers of the heart and can lead to sudden cardiac death if medical attention is not provided within minutes of onset. Most of the approximately 300,000 sudden cardiac deaths (SCDs) reported every year in North America (45,000 of them in Canada) is related to VF. Atrial Fibrillation (AF), in comparison, originates from the upper chambers of the heart, and although not as lethal as VF, can seriously affect quality of life and increase the risk of stroke in patients. There is a great need to develop new engineering methodologies to improve understanding and assist in reducing the mortality rates associated with these cardiac arrhythmias. The mechanisms behind VF and AF are elusive due to the nonstationary nature of the processes and the ethical/practical limitations in studying human arrhythmias. Over the years, signal processing approaches have aided the medical community in extracting information from electrograms (electrical signals from the heart’s surface) and electrocardiograms (cardiac electrical signals from the body surface), optimizing treatment options, and developing intelligent medical devices. The proposed research program will aim to identify novel ways to quantify these cardiac arrhythmias, so as to arrive at short-term and long-term treatment options. Specifically, the research, in collaboration with Toronto General Hospital and St. Michael’s Hospital, will develop advanced electrogram and electrocardiogram signal and image processing techniques to improve the efficiency of long-term focused medical therapies in identifying and eliminating the sources responsible for these arrhythmias, increase the intelligence of implantable devices, and provide vital information to the emergency medical services personnel to improve survival rates in cardiac resuscitation efforts.
心脏是一个引人入胜且精心设计的重要器官,具有节奏(即扩展和收缩)的电力机械功能,以节奏地在生物的整个生命中维持血液循环。当这种节奏受到干扰或出于多种病理生理原因而进入心律失常和膨胀的心脏时,可能会导致生命威胁医疗状况。这些有节奏的疾病会导致心律不齐,这会严重影响心输出量(或血液流动)。心室纤颤(VF)是一种心律不齐,起源于心脏的下腔,如果在发作几分钟内未提供医疗护理,可能会导致心脏死亡。每年在北美(加拿大45,000人)报告的大约300,000次心脏死亡(SCD)中,大多数与VF有关。相比之下,心房颤动(AF)起源于心脏的上腔,尽管不像VF那样致命,但可以严重影响生活质量并增加患者中风的风险。非常需要开发新的工程方法,以提高理解并帮助降低与这些心律不齐相关的死亡率。 VF和AF背后的机制是由于该过程的非平稳性质以及研究人类心律不齐的伦理/实际局限性。多年来,信号处理方法有助于医学界从电子学(来自心脏表面的选举信号)和心电图(来自身体表面的心脏电信号),优化的治疗选择以及开发智力医疗设备的信息。拟议的研究计划将旨在确定量化这些心律不齐的新方法,以便以短期和长期治疗选择。具体而言,这项研究将与多伦多综合医院和圣迈克尔医院合作,将开发高级的电子和心电图信号和图像处理技术,以提高长期集中的医疗疗法在识别和消除负责这些心律失常的来源方面的效率,并提高植入式设备的智能,并提高紧急医疗服务人员的努力,以提高努力的努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Umapathy, Karthikeyan其他文献

Phase Mapping of Cardiac Fibrillation
  • DOI:
    10.1161/circep.110.853804
  • 发表时间:
    2010-02-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Umapathy, Karthikeyan;Nair, Krishnakumar;Nanthakumar, Kumaraswamy
  • 通讯作者:
    Nanthakumar, Kumaraswamy
Classification of lung pathologies in neonates using dual-tree complex wavelet transform.
  • DOI:
    10.1186/s12938-023-01184-x
  • 发表时间:
    2023-12-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Aujla, Sagarjit;Mohamed, Adel;Tan, Ryan;Magtibay, Karl;Tan, Randy;Gao, Lei;Khan, Naimul;Umapathy, Karthikeyan
  • 通讯作者:
    Umapathy, Karthikeyan
Intramural Activation During Early Human Ventricular Fibrillation
  • DOI:
    10.1161/circep.110.961037
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Nair, Krishnakumar;Umapathy, Karthikeyan;Nanthakumar, Kumaraswamy
  • 通讯作者:
    Nanthakumar, Kumaraswamy
Aborted sudden death from sustained ventricular fibrillation
  • DOI:
    10.1016/j.hrthm.2008.04.005
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Nair, Krishnakumar;Umapathy, Karthikeyan;Nanthakumar, Kumaraswamy
  • 通讯作者:
    Nanthakumar, Kumaraswamy
Feature-based MRI data fusion for cardiac arrhythmia studies
  • DOI:
    10.1016/j.compbiomed.2016.02.006
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Magtibay, Karl;Beheshti, Mohammadali;Umapathy, Karthikeyan
  • 通讯作者:
    Umapathy, Karthikeyan

Umapathy, Karthikeyan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Umapathy, Karthikeyan', 18)}}的其他基金

Adaptive Data Processing, Modeling, and Quantification Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应数据处理、建模和量化方法
  • 批准号:
    RGPIN-2020-04933
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Data Processing, Modeling, and Quantification Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应数据处理、建模和量化方法
  • 批准号:
    RGPIN-2020-04933
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Data Processing, Modeling, and Quantification Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应数据处理、建模和量化方法
  • 批准号:
    RGPIN-2020-04933
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Signal Modeling and Feature Extraction Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应信号建模和特征提取方法
  • 批准号:
    RGPIN-2015-06644
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Signal Modeling and Feature Extraction Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应信号建模和特征提取方法
  • 批准号:
    RGPIN-2015-06644
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Signal Modeling and Feature Extraction Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应信号建模和特征提取方法
  • 批准号:
    RGPIN-2015-06644
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Signal Modeling and Feature Extraction Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应信号建模和特征提取方法
  • 批准号:
    RGPIN-2015-06644
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Signal and image processing methods for studying human ventricular fibrillation
研究人体心室颤动的信号和图像处理方法
  • 批准号:
    386738-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Signal and image processing methods for studying human ventricular fibrillation
研究人体心室颤动的信号和图像处理方法
  • 批准号:
    386738-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Signal and image processing methods for studying human ventricular fibrillation
研究人体心室颤动的信号和图像处理方法
  • 批准号:
    386738-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

生姜6-姜酚调控IDO1信号通路改善肠道粘液屏障功能的机制探究
  • 批准号:
    32301974
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
拟南芥转录因子ERF012调控ABA信号和种子萌发的分子机制
  • 批准号:
    32300281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向肉羊生命特征精准辨识的可穿戴柔性无创多模态传感信号检测方法研究
  • 批准号:
    62303471
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
原位矿化诱导中性粒细胞弹性蛋白酶ELANE介导Notch信号通路增效肺癌放疗的机制研究
  • 批准号:
    82373199
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
二价染色质调控拟南芥响应发育与环境信号的分子与表观遗传机理研究
  • 批准号:
    32330007
  • 批准年份:
    2023
  • 资助金额:
    219 万元
  • 项目类别:
    重点项目

相似海外基金

Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
  • 批准号:
    10748776
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
KRAS inhibitors prime cancer cells for macrophage-mediated destruction
KRAS 抑制剂可引发巨噬细胞介导的破坏癌细胞
  • 批准号:
    10638364
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Molecular mechanism of membrane association of Bruton's Tyrosine Kinase
布鲁顿酪氨酸激酶膜缔合的分子机制
  • 批准号:
    10604872
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
  • 批准号:
    10715925
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了