"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
基本信息
- 批准号:418296-2012
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, random constructions have become a very fruitful tool in Quantum Information Theory (QIT). The high-dimensional setting is very common in QIT since mathematical descriptions of QIT (as well as other scientific and engineering) questions often involve a large number of degrees of freedom (which can be interpreted as the dimension). For instance, the state space of an 8 qutrit quantum system is of dimension of more than 43 million. Such a high-dimensional setting makes the numerical approach impractical. However, Geometric Functional Analysis (GFA) and Random Matrices (RM) bring the "blessing of dimensionality" because of the "central limit theorem-like" effects. These areas aim to understand typical features of geometric objects and matrix valued probability measures as the dimension become large. Another common feature for QIT is convexity. Many objects of interest in QIT are convex bodies. Hence, understanding the geometric properties of convex bodies is important for QIT, and is the main goal for Convex Geometric Analysis (CGA).The proposed research will involve several projects in CGA and in QIT. In CGA, the PI will continue his work on understanding properties of affine invariants associated with convex bodies and exploring their connections with other fields, such as PDE, Geometric Tomography, and Information Theory. In QIT, the PI will focus on understanding properties of entanglement, PPT and random induced states, and further explore the connections between QIT, RM, CGA and GFA. It is hoped that the proposed work will deepen the understanding of affine invariants (especially affine surface areas), help build foundation on the Orlicz-Brunn-Minkowski theory, and develop new affine invariants for spaces other than real Euclidean space. In QIT, it is expected that the proposed work will provide much deeper view of quantum entanglement, and provide useful results for detecting quantum entanglement. Lastly, the proposed work will be advantageous to the training of HQP as the PI has specific plans to involve students in his research.
近年来,随机构造已成为量子信息论(QIT)中非常富有成效的工具。高维设置在 QIT 中非常常见,因为 QIT(以及其他科学和工程)问题的数学描述通常涉及大量自由度(可以解释为维度)。例如,8量子系统的状态空间的维数超过4300万维。如此高维的设置使得数值方法不切实际。然而,几何泛函分析(GFA)和随机矩阵(RM)由于“类中心极限定理”效应而带来了“维度的祝福”。这些领域旨在了解几何对象的典型特征以及随着维度变大而进行的矩阵值概率度量。 QIT 的另一个共同特征是凸性。 QIT 中感兴趣的许多物体都是凸体。因此,理解凸体的几何性质对于QIT很重要,也是凸几何分析(CGA)的主要目标。所提出的研究将涉及CGA和QIT中的多个项目。在 CGA 中,PI 将继续致力于理解与凸体相关的仿射不变量的性质,并探索它们与其他领域的联系,例如偏微分方程、几何断层扫描和信息论。在QIT中,PI将重点了解纠缠、PPT和随机诱导态的性质,并进一步探索QIT、RM、CGA和GFA之间的联系。希望所提出的工作能够加深对仿射不变量(特别是仿射曲面区域)的理解,帮助奠定 Orlicz-Brunn-Minkowski 理论的基础,并为实欧几里得空间以外的空间开发新的仿射不变量。在 QIT 中,预计所提出的工作将为量子纠缠提供更深入的视角,并为检测量子纠缠提供有用的结果。最后,拟议的工作将有利于 HQP 的培训,因为 PI 有具体计划让学生参与他的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye, Deping其他文献
On the Bures volume of separable quantum states
- DOI:
10.1063/1.3187216 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:1.3
- 作者:
Ye, Deping - 通讯作者:
Ye, Deping
Phase transitions for random states and a semicircle law for the partial transpose
- DOI:
10.1103/physreva.85.030302 - 发表时间:
2012-03-12 - 期刊:
- 影响因子:2.9
- 作者:
Aubrun, Guillaume;Szarek, Stanislaw J.;Ye, Deping - 通讯作者:
Ye, Deping
Ye, Deping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye, Deping', 18)}}的其他基金
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复分析与分形几何交叉研究的几个问题
- 批准号:12371072
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于几何向量的地形分析模型研究
- 批准号:42371407
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等几何分析的几何建模及其在结构优化设计中的应用
- 批准号:12371383
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
哈密翼龙飞行适应研究——基于颅内模和内耳骨迷路的CT数据及几何形态分析
- 批准号:42302003
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
离散空间上的几何分析理论及其应用
- 批准号:12301064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
- 批准号:
2337630 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
Applications of Fourier analysis to convex geometry and geometric tomography
傅里叶分析在凸几何和几何断层扫描中的应用
- 批准号:
RGPIN-2014-03874 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Applications of Fourier analysis to convex geometry and geometric tomography
傅里叶分析在凸几何和几何断层扫描中的应用
- 批准号:
RGPIN-2014-03874 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Applications of Fourier analysis to convex geometry and geometric tomography
傅里叶分析在凸几何和几何断层扫描中的应用
- 批准号:
RGPIN-2014-03874 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual