Spaces of analytic functions and their operators
解析函数空间及其算子
基本信息
- 批准号:251135-2012
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex analysis and operator theory are two classical branches of mathematics. For several decades, many intelligent people have brought new ideas into thee areas and also polished and better explained the old ones. That is why the main open questions are very difficult and resisted the attempts of mathematicians by now. Almost a century ago, G. Hardy put the first break of a rich function space which bears his name: Hardy spaces. Since then, analysts have work on different aspects of these spaces, or their close relatives like Bergman spaces, model subspaces, de Branges-Rovnyak spaces and Dirichlet spaces. Spaces of analytic functions have now a solid foundation. Nevertheless, in each case, it is an active domain of research and there are numerous open questions which have kept us busy. Studying the operators on function spaces have proved to be very fruitful. On one hand, it sheds light to the structure of ambient space and helps us to better understand the properties of its elements. For example, the boundary behavior of an element and its derivative at a given point of the frontier is related to the image of an operator. On the other hand, we can exploit the known facts about function spaces to answer some questions in operator theory. The interplay between two classical disciplines is the main feature of function spaces and their operators and, in a sense, explains its richness and beauty. Function spaces have also found essential applications in other branches of mathematics as well as in science and technology. A celebrated example is the H-infintity control theory. The letter H stands for the Hardy space. This theory was founded by the late professor Zames in early 80's at McGill University, and since then has changed the world of control theory. Model subspaces, in particular the Paley-Wiener space, play an important role in digital communication. Blaschke products are used in filter design. Hardy spaces are used in modeling laser beams. There are numerous other applications in Physics and engineering. This proposal deals with some essential open questions in the frontiers of complex function theory and their operators. Hence, any progress on this line of research will directly effect many other fields in science and engineering.
复分析和算子理论是数学的两个经典分支。几十年来,许多聪明人给这些领域带来了新的想法,同时也完善和更好地解释了旧的想法。这就是为什么主要的开放性问题非常困难并且迄今为止数学家的尝试都受到抵制。大约一个世纪前,G. Hardy 首次突破了一个以他的名字命名的丰富函数空间:Hardy 空间。从那时起,分析师开始研究这些空间的不同方面,或者它们的近亲,如伯格曼空间、模型子空间、de Branges-Rovnyak 空间和狄利克雷空间。解析函数空间现在已经有了坚实的基础。然而,在每种情况下,它都是一个活跃的研究领域,并且有许多悬而未决的问题让我们忙碌起来。事实证明,研究函数空间上的算子是非常富有成效的。一方面,它揭示了环境空间的结构,帮助我们更好地理解其元素的属性。例如,元素的边界行为及其在边界给定点处的导数与算子的图像相关。另一方面,我们可以利用函数空间的已知事实来回答算子理论中的一些问题。两个经典学科之间的相互作用是功能空间及其操作者的主要特征,从某种意义上说,解释了它的丰富性和美丽。函数空间在数学的其他分支以及科学和技术中也有重要的应用。一个著名的例子是 H-无穷控制理论。字母 H 代表哈代空间。该理论由已故麦吉尔大学 Zames 教授于 80 年代初创立,从此改变了控制理论的世界。模型子空间,特别是 Paley-Wiener 空间,在数字通信中发挥着重要作用。 Blaschke 产品用于滤波器设计。哈迪空间用于激光束建模。在物理和工程领域还有许多其他应用。该提案涉及复杂函数理论及其算子前沿领域的一些重要的开放性问题。因此,这一研究领域的任何进展都将直接影响科学和工程的许多其他领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mashreghi, Javad其他文献
Mashreghi, Javad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mashreghi, Javad', 18)}}的其他基金
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
A Mathematical approach for characterizing the dispersion of La1.8 Sr0.2 NiO4 filler in Epoxy-based dielectric composite
表征环氧介电复合材料中 La1.8 Sr0.2 NiO4 填料分散度的数学方法
- 批准号:
501209-2016 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
Spaces of analytic functions and their operators
解析函数空间及其算子
- 批准号:
251135-2012 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Spaces of analytic functions and their operators
解析函数空间及其算子
- 批准号:
251135-2012 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Spaces of analytic functions and their operators
解析函数空间及其算子
- 批准号:
251135-2012 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Spaces of analytic functions and their operators
解析函数空间及其算子
- 批准号:
251135-2012 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
利用单细胞分析技术系统性解析Lep基因的功能
- 批准号:82300937
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新的昆虫STING内源性配体的发现和抗病毒功能分析
- 批准号:32370767
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
酿酒酵母高翻译选择性人工核糖体的构建与功能分析研究
- 批准号:32371494
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于反应性长余辉发光纳米功能阵列的气体污染物同步分析
- 批准号:22276001
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
NLPR3对脑功能区髓鞘相关测量值的影响及创伤应激的相关性分析
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Operators on reproducing kernel Banach spaces of analytic functions
解析函数的核Banach空间再现算子
- 批准号:
RGPIN-2017-04975 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Operators on reproducing kernel Banach spaces of analytic functions
解析函数的核Banach空间再现算子
- 批准号:
RGPIN-2017-04975 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Operators on reproducing kernel Banach spaces of analytic functions
解析函数的核Banach空间再现的算子
- 批准号:
RGPIN-2017-04975 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
International Conference on Interpolation in Spaces of Analytic Functions at CIRM
CIRM 解析函数空间插值国际会议
- 批准号:
1936503 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Operators on reproducing kernel Banach spaces of analytic functions
解析函数的核Banach空间再现的算子
- 批准号:
RGPIN-2017-04975 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual