Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
基本信息
- 批准号:RGPIN-2014-06461
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I propose to study the regularity of solutions for several representative partial differential equations in mathematical fluid mechanics.Equations from fluid mechanics have always played an important role in the development of the theory of partial differential equations. Among the many open problems these equations present, one of the most important is their “well-posedness" regarding the existence and uniqueness of the solutions. The key to settling the well-posedness problem is to understand how the solutions can stay regular or form finite-time singularities. The significance of this problem is two-fold. From the mathematical point of view, regularity (or lack thereof) of solutions is the very first and most fundamental issue to be settled in any theory of partial differential equations; from the physical point of view, regularity of solutions directly relates to the validity of the equations as mathematical models for physical phenomena. There are three major obstacles to successful mathematical analysis of equations from mathematical fluid mechanics: nonlinear terms, nonlocal operators, and coupling between unknown quantities. These difficulties have inspired the invention of several new methods and techniques for partial differential equations in recent years. However the progress is still far from satisfactory. I plan to contribute to the theory of partial differential equations through detailed study of four representative systems: the two-dimensional generalized magnetohydrodynamical (GMHD) equations, the Euler-Poincare equations, a one-dimensional nonlinear nonlocal system, and the Onsager model for liquid crystals. These equations are chosen to achieve a balance of difficulty/impact and accessibility. On one hand, all four exhibit most, if not all, of the three difficulties in mathematical fluid mechanics: nonlinearity, nonlocality, and coupling. As a consequence, progress in the study of these equations would shed light on the study of other fluid mechanical equations. Furthermore, as many mathematical models in chemistry, biology, and engineering are derived using ideas from fluid mechanics, the proposed research will also have impact on those fields. On the other hand, there is evidence that the well-posedness problem of these systems, though still open, are among the more tractable ones in the many open problems in mathematical fluid mechanics. Therefore, these equations are ideal for the training of HQP. The outcome of the proposed research will significantly improve our understanding of nonlinearity, nonlocality, and coupling in partial differential equations and will shed light on the study of a wide variety of equations from not only fluid mechanics but also other fields such as mathematical biology. It will also contribute to our understanding of turbulence. Progress in the proposed research will be of interest to both the partial differential equations community and the fluid mechanics community. Part of the proposed research will also draw attention from the community of nonlinear functional analysis. The proposed research will benefit from existing and potential national and international collaborations. Through working on the proposed projects, HQP will receive comprehensive training in partial differential equations, harmonic analysis, nonlinear functional analysis, fluid mechanics, and scientific computing.
我建议研究数学流体力学中几个代表性偏微分方程的解的规律性。流体力学方程在偏微分方程理论的发展中一直发挥着重要作用,在这些方程提出的许多开放性问题中,有一个。其中最重要的是它们关于解的存在性和唯一性的“适定性”,解决适定性问题的关键是理解解如何保持正则或形成有限时间奇点的意义。是双重的。从数学的角度来看,解的正则性(或缺乏正则性)是任何偏微分方程理论首先要解决的也是最基本的问题;从物理的角度来看,解的正则性直接关系到方程的有效性;数学流体力学方程的数学模型的成功存在三个主要障碍:非线性项、非局部算子和未知量之间的耦合。这些困难激发了一些新方法和技术的发明。但近年来微分方程取得了进展。我计划通过对四个代表性系统的详细研究为偏微分方程理论做出贡献:二维广义磁流体动力学(GMHD)方程、欧拉-庞加莱方程、一维非线性非局部系统和选择这些方程是为了实现难度/影响和可访问性的平衡,这四个方程表现出数学流体力学中的大部分(如果不是全部)困难:非线性、因此,这些方程的研究进展将为其他流体力学方程的研究提供启示。此外,由于化学、生物学和工程学中的许多数学模型都是利用流体力学的思想推导出来的。另一方面,有证据表明,这些系统的适定性问题虽然仍然是开放性的,但在数学流体力学的许多开放性问题中属于更容易处理的问题。这些方程非常适合训练HQP 的研究成果将显着提高我们对偏微分方程中的非线性、非局域性和耦合性的理解,并将为流体力学以及数学生物学等其他领域的各种方程的研究提供线索。它还将有助于我们对湍流的理解。所提出的研究进展将引起偏微分方程界和流体力学界的兴趣,部分研究也将引起非线性泛函分析界的关注。拟议的研究将受益通过开展拟议项目,HQP 将接受偏微分方程、调和分析、非线性泛函分析、流体力学和科学计算方面的全面培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu, Xinwei其他文献
Illuminating the lateral organization of cell-surface CD24 and CD44 through plasmon coupling between Au nanoparticle immunolabels.
- DOI:
10.1021/ac303310j - 发表时间:
2013-02-05 - 期刊:
- 影响因子:7.4
- 作者:
Yu, Xinwei;Wang, Jing;Feizpour, Amin;Reinhard, Bjoern M. - 通讯作者:
Reinhard, Bjoern M.
Quantifying lipid contents in enveloped virus particles with plasmonic nanoparticles.
- DOI:
10.1002/smll.201402184 - 发表时间:
2015-04 - 期刊:
- 影响因子:13.3
- 作者:
Feizpour, Amin;Yu, Xinwei;Akiyama, Hisashi;Miller, Caitlin M.;Edmans, Ethan;Gummuluru, Suryaram;Reinhard, Bjoern M. - 通讯作者:
Reinhard, Bjoern M.
Spatial heterogeneity of urban-rural integration and its influencing factors in Shandong province of China.
- DOI:
10.1038/s41598-022-18424-0 - 发表时间:
2022-08-22 - 期刊:
- 影响因子:4.6
- 作者:
Shan, Baoyan;Zhang, Qiao;Ren, Qixin;Yu, Xinwei;Chen, Yanqiu - 通讯作者:
Chen, Yanqiu
NOMA Design With Power-Outage Tradeoff for Two-User Systems
- DOI:
10.1109/lwc.2020.2987992 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:6.3
- 作者:
Sun, Zeyu;Jing, Yindi;Yu, Xinwei - 通讯作者:
Yu, Xinwei
Study on the spatial heterogeneity of urban heat islands and influencing factors
- DOI:
10.1016/j.buildenv.2021.108604 - 发表时间:
2022-01-17 - 期刊:
- 影响因子:7.4
- 作者:
Chen, Yanqiu;Shan, Baoyan;Yu, Xinwei - 通讯作者:
Yu, Xinwei
Yu, Xinwei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu, Xinwei', 18)}}的其他基金
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
- 批准号:
RGPIN-2019-05410 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
- 批准号:
RGPIN-2019-05410 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
- 批准号:
RGPIN-2019-05410 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
- 批准号:
RGPIN-2019-05410 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
- 批准号:
RGPIN-2014-06461 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
- 批准号:
RGPIN-2014-06461 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
- 批准号:
RGPIN-2014-06461 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
- 批准号:
RGPIN-2014-06461 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
3D incompressible Euler equations: finite time singularities and Onsager's conjecture
3D 不可压缩欧拉方程:有限时间奇点和 Onsager 猜想
- 批准号:
371946-2009 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
3D incompressible Euler equations: finite time singularities and Onsager's conjecture
3D 不可压缩欧拉方程:有限时间奇点和 Onsager 猜想
- 批准号:
371946-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
数学物理问题中正则化模型的不确定性量化分析
- 批准号:12371423
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
高维零磁扩散磁流体力学方程组若干数学问题的研究
- 批准号:12371227
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
多模态数学问题理解和类人解答方法研究
- 批准号:62376012
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于N-S方程的源项识别及参数控制反问题数学理论和算法研究
- 批准号:12371420
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
热辐射影响的可压缩流体模型的数学问题研究
- 批准号:12371222
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
- 批准号:
RGPIN-2014-06461 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
- 批准号:
RGPIN-2014-06461 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
- 批准号:
RGPIN-2014-06461 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
- 批准号:
RGPIN-2014-06461 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Free boundary problems for flows with phase transitions consistent with thermodynamics based on maximal regularity theorem
基于最大正则定理的符合热力学的相变流动自由边界问题
- 批准号:
24340025 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)