Robust Structured Multigrid Algorithms for Mechanics of Heterogeneous Media

异质介质力学的鲁棒结构化多重网格算法

基本信息

  • 批准号:
    RGPIN-2014-06032
  • 负责人:
  • 金额:
    $ 3.93万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

With the steady increase in modern computing resources has come an increased demand for high-fidelity computational simulation tools in many areas of science and engineering. This demand is driven by the need for understanding physical processes at scales where prototype engineering or lab-scale experimentation are impractical or intractable, but where the underlying physical processes are well-enough understood to yield accurate mathematical models on which to base a computational approach. Such simulation has, indeed, been a driving force in computation throughout its history, and modern simulation toolkits include highly detailed models that, consequently, have high computational costs associated with them. The principle focus of this proposal is the development, analysis, and implementation of computer algorithms to accelerate these computations.A wide class of physical problems are modeled by a similar family of mathematical equations, focusing on the dynamics of incompressible fluids and incompressible solid bodies. These equations naturally model physical energy-minimization principles coupled with the constraint of conservation of mass. While the equivalent unconstrained energy minimization problems are in a class for which efficient simulation techniques are known, the constrained versions of interest here are not. Thus, the focus of this research is in the extension of these approaches to the constrained minimization models associated with these problems. Two key aspects will be studied, focusing on the development of so-called optimal algorithms for these simulations, and on developing these algorithms to take full advantage of modern computational hardware.The algorithms in this research program are focused on the multigrid methodology, named after the multiple scales of a problem that are used in order to achieve an efficient solution algorithm. For problems with variable material properties, the key challenges in applying the multigrid approach are in developing appropriately averaged models to account for long-distance behaviour, and in developing efficient complementary techniques for resolving short-distance behaviour. In this proposal, a major focus is given to doing the latter in a way that greatly leverages modern high-performance computing architectures to produce algorithms that are efficient both in theory and in practice.The results of the proposed research promise to provide both a strong step forward in the academic study of these problems and software that can be directly applied in other science and engineering disciplines, and in industrial practice. Thus, the expected economic benefit is significant, particularly to the high-technology and bio-technology sectors. The proposed work will directly result in the training of several students, at the undergraduate and graduate levels, in key skills in the emerging discipline of computational science and engineering, enabling them to fill high-demand roles in these industries, essential for the Canadian information economy.
随着现代计算资源的稳步增长,许多科学和工程领域对高保真计算模拟工具的需求不断增加。这一需求是由于需要理解一定规模的物理过程而驱动的,在这种规模下,原型工程或实验室规模的实验是不切实际或难以处理的,但底层的物理过程可以被充分理解,可以产生作为计算方法基础的准确的数学模型。事实上,这种模拟在其历史上一直是计算的驱动力,现代模拟工具包包括高度详细的模型,因此,与之相关的计算成本很高。该提案的主要重点是开发、分析和实施计算机算法来加速这些计算。通过一系列类似的数学方程对广泛的物理问题进行建模,重点关注不可压缩流体和不可压缩固体的动力学。这些方程自然地模拟了物理能量最小化原理以及质量守恒定律的约束。虽然等效的无约束能量最小化问题属于已知有效模拟技术的类别,但这里感兴趣的约束版本却不是。因此,本研究的重点是将这些方法扩展到与这些问题相关的约束最小化模型。将研究两个关键方面,重点是为这些模拟开发所谓的最佳算法,以及开发这些算法以充分利用现代计算硬件。本研究计划中的算法重点关注多重网格方法,该方法以为了实现有效的解决算法而使用的问题的多个尺度。对于具有可变材料属性的问题,应用多重网格方法的关键挑战是开发适当的平均模型来解释长距离行为,以及开发有效的补充技术来解决短距离行为。在本提案中,主要重点是以一种极大地利用现代高性能计算架构来产生在理论和实践上都有效的算法的方式来完成后者。所提出的研究结果有望提供强大的在这些问题和可直接应用于其他科学和工程学科以及工业实践的软件的学术研究方面向前迈进。因此,预期的经济效益是显着的,特别是对于高科技和生物技术领域。拟议的工作将直接对数名本科生和研究生进行计算科学与工程新兴学科关键技能的培训,使他们能够在这些行业中担任高需求的角色,这对加拿大信息产业至关重要经济。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MacLachlan, Scott其他文献

Effect of Evaporation and Condensation at Menisci on Apparent Thermal Slip

MacLachlan, Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MacLachlan, Scott', 18)}}的其他基金

Design and Analysis of Algorithms for High-Performance Scientific Computing
高性能科学计算算法的设计与分析
  • 批准号:
    RGPIN-2019-05692
  • 财政年份:
    2022
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Analysis of Algorithms for High-Performance Scientific Computing
高性能科学计算算法的设计与分析
  • 批准号:
    RGPIN-2019-05692
  • 财政年份:
    2021
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Analysis of Algorithms for High-Performance Scientific Computing
高性能科学计算算法的设计与分析
  • 批准号:
    RGPIN-2019-05692
  • 财政年份:
    2020
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Structured Multigrid Algorithms for Mechanics of Heterogeneous Media
异质介质力学的鲁棒结构化多重网格算法
  • 批准号:
    RGPIN-2014-06032
  • 财政年份:
    2018
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Structured Multigrid Algorithms for Mechanics of Heterogeneous Media
异质介质力学的鲁棒结构化多重网格算法
  • 批准号:
    RGPIN-2014-06032
  • 财政年份:
    2016
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Structured Multigrid Algorithms for Mechanics of Heterogeneous Media
异质介质力学的鲁棒结构化多重网格算法
  • 批准号:
    RGPIN-2014-06032
  • 财政年份:
    2015
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Structured Multigrid Algorithms for Mechanics of Heterogeneous Media
异质介质力学的鲁棒结构化多重网格算法
  • 批准号:
    RGPIN-2014-06032
  • 财政年份:
    2014
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

冠醚聚合物电解质中结构化Li+通道的可控构建及其解耦传导特性
  • 批准号:
    52303245
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分子筛封装的Pt-M双金属蜂窝整体式结构化催化剂的构建及其氢化硝基苯的催化性能研究
  • 批准号:
    22308009
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多源动态扩散驱动的结构化图学习理论与方法
  • 批准号:
    62376146
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
  • 批准号:
    62306239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
锥形结构化电极表面上电解制氢的气泡动力学研究
  • 批准号:
    22309007
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Continuing Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computing over Compressed Graph-Structured Data
压缩图结构数据的计算
  • 批准号:
    EP/X039447/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Research Grant
Nano-structured RC Networks - A Pathway To Artificial Skin
纳米结构 RC 网络 - 人造皮肤的途径
  • 批准号:
    EP/Y002172/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Research Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
  • 批准号:
    24K20845
  • 财政年份:
    2024
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了