Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence

定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干

基本信息

  • 批准号:
    RGPIN-2014-04530
  • 负责人:
  • 金额:
    $ 3.06万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

If intense light irradiates solids, an exotic phase of matter called a Bose-Einstein condensate (BEC) is possible. By interacting strongly with materials, light couples with electrons to make 'half-light, half-electron' quasiparticles, termed exciton-polaritons, many of which may occupy the same quantum-mechanical state, so they all move as one, akin to a large ensemble of pairs of figure skaters, all performing in exquisite choreography when the spotlight is upon them. Individual particles lose their identity, acting cooperatively as a 'quantum liquid' over the entire solid when the laser shines on it. Such macroscopic spontaneous coherence (the collective quantum behaviour polaritons, much like the large number of figure skaters) of is at the origin of many important but poorly understood condensed-matter phenomena such as superfluidity. These states have only been observed in very specific solids called semiconductor quantum wells – built by atoms arranged in a crystal, in which electrons are confined to move in two dimensions, and at very low temperatures (~20 K, or -253 °C). I will address the following question: can we find such condensates at room temperature in solids made with molecules? This is a big question because it addresses the physics of these states in materials beyond 'simple' solids, built with organic molecules like those that surround us and are in us, in a temperature environment familiar to us. Understanding this fundamental behaviour will bring new breakthroughs in quantum mechanics by generalising the physics of formation and dissipation of this new state of matter. This may lead to new coherent light sources that consume less power than conventional lasers, and to devices that may be used in quantum computers. Molecules are configurationally 'soft and fluffy', resulting in structural disorder. Electronic interactions between molecules are therefore complex, which can be an important cause of coherence dissipation, potentially hindering condensation. Nonetheless, organic materials are ideal candidates for BEC because they absorb light very strongly, rendering the strength of the coupling between photons (light) and electrons well over an order of magnitude larger than in quantum wells, and can be stronger than energetic disorder in good optical devices. Furthermore, in organic semiconductors it is theoretically possible to form quantum condensates in these materials at room temperature, which is not generally possible with inorganic quantum wells with over an order of magnitude lower exciton binding energies. I will fabricate new devices based on plastics, which will permit the study of these fundamental physics with intricate detail because it will be possible to more easily incorporate molecular materials in them. I will study a range of materials that conduct electricity and may be used in optoelectronic devices, ranging from crystals composed of molecules to conducting plastics.I underline the potential for transformative impact of the proposed programme of work. We will use new fabrication protocols to make devices, and then study them with sophisticated experimental techniques producing short laser pulses (shorter than a millionth of a millionth of a second) to study polariton condensation processes in real time. The impact of my work will be to develop a rigorous framework to understand and control how light interacts with these materials, and real-life applications such as lasers can emerge in the long term. This grant will enable big-picture understanding of photophysics of plastic semiconductors, connecting concepts from classical polymer science, condensed-matter physics, and chemical physics.
如果强光照射固体,则可能会出现一种称为玻色-爱因斯坦凝聚(BEC)的奇异物质相,通过与材料相互作用,光与电子耦合形成“半光、半电子”准粒子,称为激子极化子。其中许多可能占据相同的量子力学状态,因此它们都作为一个整体移动,类似于一大群花样滑冰运动员,在聚光灯下都以精美的舞蹈表演当激光照射在它们身上时,单个粒子失去了它们的身份,在整个固体上协同作用(集体量子行为极化子,就像大量的花样滑冰运动员一样)。是许多重要但人们知之甚少的凝聚态物质现象(例如超流)的起源。这些状态只能在称为半导体量子阱的非常特殊的固体中观察到——由排列在晶体中的原子构成,其中电子被限制在其中移动。二维,并且在非常低的温度(~20 K,或-253 °C)下,我将解决以下问题:我们可以在室温下在由分子制成的固体中找到这种凝聚物吗?在我们熟悉的温度环境中,在“简单”固体之外的材料中研究这些状态的物理学,这些材料是由我们周围和我们体内的有机分子构成的,理解这种基本行为将通过概括量子力学的物理学带来新的突破。的形成和消散这种新的物质状态可能会产生比传统激光器消耗更少能量的新相干光源,并且可能会导致量子计算机中使用的分子结构“柔软而蓬松”,从而导致结构之间的电子相互作用。因此,分子很复杂,这可能是相干耗散的一个重要原因,可能会阻碍凝聚。然而,有机材料是 BEC 的理想候选者,因为它们吸收光的能力非常强,使得光子(光)和电子之间的耦合强度远远超过。比量子阱大一个数量级,并且比良好光学器件中的能量无序更强。此外,在有机半导体中,理论上可以在室温下在这些材料中形成量子凝聚体,这对于无机量子来说通常是不可能的。我将制造基于塑料的新器件,这将允许对这些基础物理进行复杂的细节研究,因为我将可以更容易地将分子材料融入其中。一系列材料导电,可用于光电设备,从分子晶体到导电塑料。我强调了拟议工作计划的变革性影响的潜力,我们将使用新的制造协议来制造设备,然后用复杂的方法研究它们。我的工作的影响将是开发一个严格的框架来理解和控制光如何与这些相互作用。从长远来看,这项资助将促进人们对塑料半导体光物理学的全面理解,将经典聚合物科学、凝聚态物理学和化学物理学的概念联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Silva, Carlos其他文献

Chronic non-cancer pain in adolescents: a narrative review.
  • DOI:
    10.1016/j.bjane.2021.04.033
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Silva, Carlos;Oliveira, Dora;Pestana-Santos, Marcia;Portugal, Francisco;Capelo, Paula
  • 通讯作者:
    Capelo, Paula
QuDPy: A Python-based tool for computing ultrafast non-linear optical responses
QuDPy:基于 Python 的工具,用于计算超快非线性光学响应
  • DOI:
    10.1016/j.cpc.2023.108891
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Shah, S.A.;Li, Hao;Bittner, Eric R.;Silva, Carlos;Piryatinski, Andrei
  • 通讯作者:
    Piryatinski, Andrei
Prognosis for children with acute kidney injury in the intensive care unit
  • DOI:
    10.1007/s00467-008-1054-0
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Bresolin, Nilzete;Silva, Carlos;Carvalho, Francisca Ligia
  • 通讯作者:
    Carvalho, Francisca Ligia
Charge Separation in Semicrystalline Polymeric Semiconductors by Photoexcitation: Is the Mechanism Intrinsic or Extrinsic?
  • DOI:
    10.1103/physrevlett.106.197401
  • 发表时间:
    2011-05-13
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Paquin, Francis;Latini, Gianluca;Silva, Carlos
  • 通讯作者:
    Silva, Carlos
Lung Cancer as a Second Primary Malignancy: Increasing Prevalence and Its Influence on Survival
  • DOI:
    10.1245/s10434-008-0296-1
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Quadrelli, Silvia;Lyons, Gustavo;Silva, Carlos
  • 通讯作者:
    Silva, Carlos

Silva, Carlos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Silva, Carlos', 18)}}的其他基金

Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
  • 批准号:
    RGPIN-2014-04530
  • 财政年份:
    2018
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
  • 批准号:
    RGPIN-2014-04530
  • 财政年份:
    2016
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
  • 批准号:
    RGPIN-2014-04530
  • 财政年份:
    2015
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Organic Semiconductor Materials
有机半导体材料
  • 批准号:
    1000215863-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Canada Research Chairs
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
  • 批准号:
    RGPIN-2014-04530
  • 财政年份:
    2014
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Organic Semiconductor Materials
有机半导体材料
  • 批准号:
    1000215863-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Canada Research Chairs
Unravelling electronic dynamics in supramolecular semiconductors from femtoseconds to milliseconds
揭示超分子半导体从飞秒到毫秒的电子动力学
  • 批准号:
    311409-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Organic Semiconductor Materials
有机半导体材料
  • 批准号:
    1000215863-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Canada Research Chairs
Critical repair of an ultrafast laser system for research on semiconductor materials
用于半导体材料研究的超快激光系统的关键修复
  • 批准号:
    439542-2013
  • 财政年份:
    2012
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Unravelling electronic dynamics in supramolecular semiconductors from femtoseconds to milliseconds
揭示超分子半导体从飞秒到毫秒的电子动力学
  • 批准号:
    311409-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

过渡金属硫族化物中强非线性激子与微腔光子的强耦合及其量子态调控
  • 批准号:
    12304347
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
表面等离激元增强激子-光子耦合及激子极化激元的量子相干控制
  • 批准号:
    12375008
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
混合维度体系中的激子-光子强耦合效应及其磁场调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
介观结构-二维材料激子极化激元的时空分辨及其在光子器件中的应用
  • 批准号:
    11804008
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
低维卤化物钙钛矿晶体光激发载流子和激子动力学研究
  • 批准号:
    11874106
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

光・機械刺激に応答する新奇発光性分子結晶システムの提案
提出一种响应光学和机械刺激的新型发光分子晶体系统
  • 批准号:
    24K17747
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
天然物を基本骨格とする刺激応答型光感受性分子の創製と次世代型光線力学療法への応用
基于天然产物的刺激响应光敏分子的创建及其在下一代光动力疗法中的应用
  • 批准号:
    23K23479
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
刺激応答型スマート分子触媒による光エネルギー変換
使用刺激响应智能分子催化剂进行光能转换
  • 批准号:
    23K26766
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
精神疾患関連遺伝子が光刺激反応を制御する神経回路の解析
精神疾病相关基因控制光刺激反应的神经回路分析
  • 批准号:
    23K06351
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
分子内配位結合を有するホウ素π電子系の光解離挙動の自在制御と機能開拓
具有分子内配位键的硼π电子体系的光解离行为和功能开发的自由控制
  • 批准号:
    23K19241
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了