Photo-Reversible Polymers for the Opto-Bio Interface
用于光生物界面的光可逆聚合物
基本信息
- 批准号:RGPIN-2014-06655
- 负责人:
- 金额:$ 3.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The eventual goal is to design, prepare, and test dye-containing polymers that can be layered onto soft optical fiber ends, that can be micro-positioned in close proximity or even contact with live neural cells to both sense and signal in 2-way communication with them. A 3-pronged approach towards this goal will combine separate projects equally in 3 fields working together of: synthetic organic dye chemistry, polymer and interfacial materials chemistry, and physical fiber optic spectroscopy. All 3 component projects in parallel propose significant advances in each field order for the combined program goals to be realized, yet advances realized in each can be independently valuable. The polymers designed will be soft, wet mimics of real biological tissue and will contain small amounts of sensitive azo dyes that change visibly in the presence of specific neurotransmitters released during synaptic events. Ultimately, this will allow for the fabrication and optimization of an active 2-way interface between live neural cells and optical fibers that sends as well as receives—using similar photo-reversible dyes to release chemical signals back that could stimulate an action potential. Historic attempts towards a working interface between live brain tissue and readout technology invariably used implanted metal micro-electrodes. These are fundamentally invasive surfaces however, and last only hours before rejection is initiated—the neural cells inevitably eventually respond to implanted metal electrodes as foreign objects by enclosing them in astroglial scars that ultimately create a barrier between the electrode and the neural communication mechanisms. The approach outlined here instead is novel in the inherent stable biocompatibility of the soft wet polymers self-assembled at the interface, and in the use of light to sense and signal instead of electrical current. Guiding the approach will be principals of bio-mimicry and self-assembly, where the surface bio-film host polymers mimic real biological tissue in their soft, wet, compliant tune-ability, and the light-responsive shape-changing azo dyes mimic our rhodopsin/retinal systems that enable vision and a direct opto-neural information interface. More specifically, this proposal seeks to extend the reversible photo-switching capability of current azo bio-films into 2-way reversible communication (sensing and signaling), using new multi-functional dyes with pH sensitivities, and pendant boronic acid groups tuned to bind and detect the dopamine class of diol neurotransmitters. Now that cell response has been shown to be able to be triggered by an azo surface, the development challenges and risks here also represent worthwhile goals to achieve: a) entire cell growth to just neural synapse, b) irreversible to reversible, c) 1-way to 2-way communication, d) long pre-irradiation to real-time communiction, e) static switching to dynamic, f) in vitro to in vivo detection, and g) large surface to small fiber.From a practical standpoint these new materials are of interest as ‘smart’ surfaces for sensing, signaling, and controlling adjacent biological activity, due to the combination of soft photochemical functionalities, and their inherent biocompatibility. From the standpoint of fundamental science, these new materials and their study will enable us to contribute to a basic understanding of biological function at the interface between living cells and artificial media, and communication between them, from a chemical and materials perspective. Combined together, this proposal represents an exciting new direction towards achieving a brain-machine interface using nature as the inspiration for both the soft organic materials, and for light as the communication medium.
最终目标是设计、制备和测试可分层到软光纤末端的含染料聚合物,这些聚合物可以微定位在紧密接近甚至与活神经细胞接触的位置,以两种方式感知和发送信号为实现这一目标,我们将采取三管齐下的方法,将三个领域的独立项目平等地结合起来:合成有机染料化学、聚合物和界面材料化学以及物理光纤光谱学,所有三个组成项目都将取得重大进展。在每个现场订单都需要实现组合项目的目标,但每个项目所实现的进步都可以具有独立的价值,所设计的聚合物将是真实生物组织的柔软、湿润的模拟物,并且将含有少量敏感的偶氮染料,这些染料在存在时会发生明显的变化。最终,这将允许制造和优化活体神经细胞和光纤之间的主动双向接口,该接口可以使用类似的光可逆染料来释放化学信号。历史上对活体脑组织和读出技术之间的工作界面的尝试总是使用植入的金属微电极,但这些基本上是侵入性表面,并且在排斥反应开始之前仅持续数小时——神经细胞最终会做出反应。植入的金属电极作为异物,将它们封闭在星形胶质疤痕中,最终在电极和神经通讯机制之间形成屏障,这里概述的方法在自组装的软湿聚合物固有的稳定生物相容性方面是新颖的。生物模仿和自组装的原理将指导该方法,其中表面生物膜主体聚合物在柔软、湿润的状态下模仿真实的生物组织。 、顺应性调谐能力和光响应形状变化偶氮染料模仿我们的视紫红质/视网膜系统,从而实现视觉和直接的视神经信息接口。更具体地说,该提案旨在扩展可逆性。现在,使用具有 pH 敏感性的新型多功能染料和调整为结合和检测二醇类神经递质的硼酸侧基,将当前偶氮生物膜的光转换能力转变为双向可逆通信(传感和信号传导)。细胞反应已被证明能够由偶氮表面触发,这里的开发挑战和风险也代表了值得实现的目标:a)整个细胞生长为神经突触, b) 不可逆到可逆,c) 1 路到 2 路通信,d) 长预照射到实时通信,e) 静态切换到动态,f) 体外检测到体内检测,g) 大表面从实用的角度来看,由于软光化学功能的结合以及从基础科学的角度来看它们固有的生物相容性,这些新材料作为用于传感、信号传导和控制相邻生物活性的“智能”表面而受到关注。 ,这些新的材料及其研究将使我们能够从化学和材料的角度促进对活细胞和人工介质之间界面的生物功能以及它们之间的通信的基本理解,该提案代表了实现这一目标的令人兴奋的新方向。脑机接口以自然为灵感,设计出柔软的有机材料,并以光作为通信媒介。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barrett, Christopher其他文献
Heterogeneous sensor data fusion for multiscale, shape agnostic flaw detection in laser powder bed fusion additive manufacturing
- DOI:
10.1080/17452759.2023.2196266 - 发表时间:
2023-12-31 - 期刊:
- 影响因子:10.6
- 作者:
Bevans, Benjamin;Barrett, Christopher;Rao, Prahalada - 通讯作者:
Rao, Prahalada
Statistical analysis of spatter velocity with high-speed stereovision in laser powder bed fusion
- DOI:
10.1007/s40964-019-00094-6 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:0
- 作者:
Barrett, Christopher;Carradero, Carolyn;Conner, Brett - 通讯作者:
Conner, Brett
Multiscale Feedback Loops in SARS-CoV-2 Viral Evolution
- DOI:
10.1089/cmb.2020.0343 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:1.7
- 作者:
Barrett, Christopher;Bura, Andrei C.;Reidys, Christian M. - 通讯作者:
Reidys, Christian M.
High transmissibility 7.35*105.
- DOI:
10.1371/journal.pone.0025149.t002 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:0
- 作者:
Lewis, Bryan;Barrett, Christopher;Marathe, Achla - 通讯作者:
Marathe, Achla
Low transmissibility 5.35*105.
- DOI:
10.1371/journal.pone.0025149.t003 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:0
- 作者:
Lewis, Bryan;Barrett, Christopher;Marathe, Achla - 通讯作者:
Marathe, Achla
Barrett, Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barrett, Christopher', 18)}}的其他基金
Developing New Soft-Bonded Light-Reversible Polymer Bio-Materials
开发新型软粘合光可逆聚合物生物材料
- 批准号:
RGPIN-2019-05661 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Developing New Soft-Bonded Light-Reversible Polymer Bio-Materials
开发新型软粘合光可逆聚合物生物材料
- 批准号:
RGPIN-2019-05661 - 财政年份:2021
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Developing New Soft-Bonded Light-Reversible Polymer Bio-Materials
开发新型软粘合光可逆聚合物生物材料
- 批准号:
RGPIN-2019-05661 - 财政年份:2020
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Developing New Soft-Bonded Light-Reversible Polymer Bio-Materials
开发新型软粘合光可逆聚合物生物材料
- 批准号:
RGPIN-2019-05661 - 财政年份:2019
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Photo-Reversible Polymers for the Opto-Bio Interface
用于光生物界面的光可逆聚合物
- 批准号:
RGPIN-2014-06655 - 财政年份:2018
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Photo-Reversible Polymers for the Opto-Bio Interface
用于光生物界面的光可逆聚合物
- 批准号:
RGPIN-2014-06655 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Photo-Reversible Polymers for the Opto-Bio Interface
用于光生物界面的光可逆聚合物
- 批准号:
RGPIN-2014-06655 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Self-Healing Polymer Additives for Cosmetics
化妆品用自修复聚合物添加剂
- 批准号:
485892-2015 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Engage Grants Program
Photo-Reversible Polymers for the Opto-Bio Interface
用于光生物界面的光可逆聚合物
- 批准号:
RGPIN-2014-06655 - 财政年份:2014
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Azo polymers for photo-reversible bio-surfaces
用于光可逆生物表面的偶氮聚合物
- 批准号:
227889-2009 - 财政年份:2013
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
可逆交联聚合物损伤-修复力学行为的理论建模与机理分析
- 批准号:12372077
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
星形聚合物单分子胶束的光诱导碘调控可逆-失活自由基聚合体系的构建
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
硼酸酯聚合物可逆界面作用与粒子巨量/单点操控的基础科学问题研究
- 批准号:52173045
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于可逆共价化学的聚合物自适应性网络复合体系制备新方法
- 批准号:52033011
- 批准年份:2020
- 资助金额:300 万元
- 项目类别:重点项目
高性能可逆多形状记忆聚合物复合材料的设计、构筑及其驱动液体透镜无级变焦的研究
- 批准号:52003201
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Creation of active Biomimetic interfaces by hands-free origami using photo-reversible phase transformation polymers
使用光可逆相变聚合物通过免提折纸创建活性仿生界面
- 批准号:
22K18938 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Photo-Reversible Polymers for the Opto-Bio Interface
用于光生物界面的光可逆聚合物
- 批准号:
RGPIN-2014-06655 - 财政年份:2018
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Photo-Reversible Polymers for the Opto-Bio Interface
用于光生物界面的光可逆聚合物
- 批准号:
RGPIN-2014-06655 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Photo-Reversible Polymers for the Opto-Bio Interface
用于光生物界面的光可逆聚合物
- 批准号:
RGPIN-2014-06655 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Photo-Reversible Polymers for the Opto-Bio Interface
用于光生物界面的光可逆聚合物
- 批准号:
RGPIN-2014-06655 - 财政年份:2014
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual