Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
基本信息
- 批准号:RGPIN-2015-04185
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Arguably the most important class of functional materials is piezoelectrics. Piezoelectricity, the coupling of mechanical deformation and electrical charge, is the enabling material property for many advanced devices. Current applications, including gyroscopes, accelerometers, and microphones, are essential for the consumer electronics, automotive, and aerospace industries – all important branches of the Canadian economy. In addition, innovative microelectromechanical systems (MEMS), biosensors, and actuators will be needed to develop tomorrow’s economy with the “internet of things”.
The newest and most innovative devices often require functional materials in highly restricted geometries, such as thin-films and nanofibers. This miniaturization causes materials to behave very differently from the “bulk” materials that have been so well characterized. In addition to interfaces, one of the primary mechanisms by which geometry can affect properties is by locally altering the stress state experienced by the material. This is not only an engineering challenge, but also a design opportunity: how can stress and interface engineering be employed to control the properties of functional materials in these devices?
Efforts to optimize a unique property like piezoelectricity typically involve varying the chemical composition or microstructure. Residual stresses and interfaces are often seen as liabilities rather than powerful tools that can be harnessed to control the underlying physical mechanisms. However, realizing the full potential of functional materials, including piezoelectrics, requires employing all possible methods of manipulation by developing an adequate understanding of governing mechanisms at the restricted geometries applicable to modern devices.
This research program develops a novel method for analyzing these complex stresses and interfaces, and uses it to explore their effect on the fundamental mechanisms in piezoelectric materials. Further, this research program investigates stress and interface engineering as a tool that can go beyond chemical composition and microstructure to realize greatly enhanced material properties that have so far been elusive. In particular, the objectives include enabling high-temperature stable piezoelectric ceramic sensors, as well as powerful piezoelectric polymer nanofibers that can act as flexible biosensors. A thermally stable sensor would be invaluable in the energy and aerospace industries, while a useful piezoelectric polymer would be a boon to the consumer electronics and biomedical fields.
可以说,最重要的一类功能材料是压电材料,它是机械变形和电荷的耦合,是许多先进设备(包括陀螺仪、加速度计和麦克风)的材料特性,对于消费电子产品至关重要。汽车和航空航天工业——加拿大经济的所有重要分支,都需要开发创新的微机电系统(MEMS)、生物传感器和执行器。明天的经济与“物联网”。
最新和最具创新性的设备通常需要几何形状受到严格限制的功能材料,例如薄膜和纳米纤维,这种小型化导致材料的行为与已被充分表征的“块状”材料截然不同。几何形状影响性能的主要机制是局部改变材料所经历的应力状态,这不仅是一个工程挑战,也是一个设计机会:如何利用应力和界面工程来控制功能材料的性能。这些设备中的材料?
优化压电性等独特特性的努力通常涉及改变化学成分或微观结构,而残余应力和界面通常被视为不利因素,而不是可用于控制潜在物理机制的强大工具。包括压电器件在内,需要通过对适用于现代设备的受限几何形状的控制机制有充分的了解,采用所有可能的操纵方法。
该研究项目开发了一种分析这些复杂应力和界面的新方法,并用它来探索它们对压电材料基本机制的影响。此外,该研究项目将应力和界面工程作为一种超越化学成分和界面的工具进行研究。显微结构以实现迄今为止难以实现的材料性能,特别是,目标包括实现高温稳定的压电陶瓷传感器,以及可用作柔性热稳定生物传感器的强大压电聚合物纳米纤维。传感器在能源和航空航天工业中将具有无价的价值,而有用的压电聚合物将给消费电子和生物医学领域带来福音。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zednik, Ricardo其他文献
Zednik, Ricardo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zednik, Ricardo', 18)}}的其他基金
Stressing the Limits of Piezoelectricity
强调压电的局限性
- 批准号:
RGPIN-2022-05125 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Antireflective nanopatterned surface treatment for glass
玻璃抗反射纳米图案表面处理
- 批准号:
539437-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
High temperature stability study of lithium niobate
铌酸锂高温稳定性研究
- 批准号:
514471-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Investigation of flexible electrode and circuit interconnect materials
柔性电极和电路互连材料的研究
- 批准号:
485504-2015 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Flexible printed electronic circuit and interconnect materials
柔性印刷电子电路和互连材料
- 批准号:
492051-2015 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Engage Plus Grants Program
相似国自然基金
图案化光阳极的全域电场调控、界面工程及光解水性能研究
- 批准号:52373277
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
界面分子工程构筑高效稳定的DJ-2D/3D杂化钙钛矿太阳能电池
- 批准号:52363026
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
面向苛刻环境Ga2O3场效应晶体管的自组装单分子层界面工程
- 批准号:62304167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
工程开挖与库水涨落条件下红层软硬界面性能演化与临滑机制
- 批准号:52369019
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于工程化益生菌的肠道脂质Pickering界面转化及肥胖干预研究
- 批准号:82304352
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optically Promoting Cardiac Maturation Using Engineered Peptides
使用工程肽光学促进心脏成熟
- 批准号:
10628281 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Robot assisted brain-wide neural recordings and comprehensive behavioral monitoring in freely behaving mice
机器人辅助自由行为小鼠的全脑神经记录和全面行为监测
- 批准号:
10401192 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Lens Epithelial Cell Response to Biomaterial Interfaces
晶状体上皮细胞对生物材料界面的反应
- 批准号:
10544163 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Lens Epithelial Cell Response to Biomaterial Interfaces
晶状体上皮细胞对生物材料界面的反应
- 批准号:
10372517 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Optically Promoting Cardiac Maturation Using Engineered Peptides
使用工程肽光学促进心脏成熟
- 批准号:
10683790 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别: