Lower Limb Assistive Devices

下肢辅助器具

基本信息

  • 批准号:
    RGPIN-2014-05557
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The loss of mobility and independence is commonly described as one of the most horrific traumas that an individual can endure. To cope with this challenge, amputees rely on prostheses, or better known as artificial limbs. With reference to the American Academy of Orthotists and Prosthetists, by the year 2020, in the United States alone, the total number of individuals who use orthotics and prosthetics is expected to reach 7.3 and 2.4 million, respectively. More alarming, data indicate increasing growth in use of assistive devices particularly among the young age segment 18 to 44 years old who expect to enjoy a healthy and active daily life. Despite progression in technology and medicine, lower limb amputees still endure many challenges that prohibit them from regaining their original movement abilities and reducing the metabolic energy consumption during locomotion. Current developed lower limb prostheses have drastically improved over the past decade; however, the vast majority still lacks the actuation elements that correspond to the skeletal muscle in a biological limb. From a mechanical perspective, the common available devices offer patients stability and often include a mechanism to absorb and dissipate energy for a comfort gait; however, these devices are incapable of harvesting and generating net power about the joints of the limb. This deficiency may be reasonably acceptable for level ground walking; however, users are unable to ascend and descend stairs or to stand up from a sitting position. Developing powered lower limb prostheses has been an engineering challenge for the past decades. Many prototypes have been in development in research laboratories and presently a commercial device is available from OSSUR (i.e. Power Knee). However, the success of these devices has been mainly hindered by the efficiency of their actuation system which recurrently relies on heavy and powerful electrical motors and gears. Unlike skeletal muscle, electrical motors do not possess a passive behavior, which prohibits them from harvesting gait energy, and thus, continuous electrical energy must be consumed throughout joint motion and even during steady position. While there are a large number of actuators that can be used for a wide range of commercial applications, very few have been feasible for lower limb assistive technologies. Such self-contained applications require a compact, lightweight, powerful and energy efficient type of actuator. Possessing similar mechanical behaviors, the Pneumatic Artificial Muscle (PAM) has been long-sought as a promising actuator for human assistive devices. Due to its biological muscle-like properties, PAMs have the potential to be used actively and passively, thus allowing for gait energy to be harvested, which can yield to a highly efficient actuation system. Whereas there have been many claims that the PAM is an ideal actuator for biomedical applications, there is no quantitative study that confirms the feasibility of the PAM for lower limb assistive devices. This research has first achieved a comprehensive study of lower limbs biomechanics to characterize its actuation requirements and subsequently validated a newly designed PAM for lower limb assistive devices. Next, this research proposes the design of PAM powered transfemoral and transtibial prostheses which would permit lower limb amputees to regain their freedom of movement and reduce the metabolic energy consumption during locomotion. Unlike current technologically advanced lower limb prostheses, the proposed devices will be affordable and functional allowing the user’s original movement abilities to be restored and a reduction of the metabolic energy consumption during locomotion is achieved.
失去活动能力和独立性通常被描述为个人能够承受的最可怕的创伤之一,为了应对这一挑战,截肢者依靠假肢,或者根据美国矫形师和假肢医师学会的说法,更广泛地称为假肢。到2020年,仅在美国,使用矫形器和假肢的总人数预计将分别达到7.3和240万,更令人震惊的数据表明还在增加。辅助器具的使用增加,特别是在 18 至 44 岁的年轻群体中,他们希望享受健康和积极的日常生活。 尽管技术和医学取得了进步,但下肢截肢者仍然面临着许多挑战,使他们无法恢复原来的运动能力并减少运动过程中的代谢能量消耗,然而,在过去的十年中,绝大多数下肢假肢都得到了显着改善;仍然缺乏与生物肢体中的骨骼肌相对应的驱动元件,从机械角度来看,常见的可用设备为患者提供稳定性,并且通常包括吸收和耗散能量以实现舒适步态的机制;无法收集和产生肢体关节的净功率,这种缺陷对于水平地面行走来说是可以接受的;但是,用户无法上下楼梯或从坐姿站起来。 过去几十年来,开发动力下肢假肢一直是一项工程挑战,研究实验室正在开发许多原型,目前 OSSUR 已推出商用设备(即动力膝),但这些设备的成功主要受到阻碍。它们的驱动系统的效率经常依赖于重型和强大的电动机和齿轮,与骨骼肌不同,电动机不具有被动行为,这会阻止它们获取步态。因此,在整个关节运动过程中,甚至在稳定位置期间,都必须消耗连续的电能。 虽然有大量的执行器可用于广泛的商业应用,但对于下肢辅助技术来说,可行的却很少。这种独立的应用需要紧凑、轻便、强大且节能的执行器,具有类似的机械性能,气动人工肌肉 (PAM) 长期以来一直被视为人类辅助设备的有前途的执行器。由于其类似肌肉的生物特性,PAM 具有主动和被动使用的潜力,从而可以收集步态能量,从而形成高效的驱动系统。 最重要的是,有许多人声称PAM是生物医学应用的理想执行器,但目前还没有定量研究证实PAM用于下肢辅助装置的可行性。本研究首次实现了下肢生物力学的全面研究来表征。接下来,本研究提出了 PAM 驱动的跨股骨和跨胫骨假肢的设计,该假肢将使下肢截肢者重新获得运动自由。与当前技术先进的下肢假肢不同,所提出的装置将经济实惠且功能齐全,使用户能够恢复原有的运动能力,并减少运动过程中的代谢能量消耗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Doumit, Marc其他文献

Experimental comfort assessment of an active exoskeleton interface
Development of an unpowered ankle exoskeleton for walking assist
Modeling and Simulation of a Lower Extremity Powered Exoskeleton
Biaxial experimental and analytical characterization of a dielectric elastomer
Development and testing of a passive Walking Assist Exoskeleton

Doumit, Marc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Doumit, Marc', 18)}}的其他基金

Development of wearable assistive technologies for human mobility
开发用于人类移动的可穿戴辅助技术
  • 批准号:
    RGPIN-2020-04295
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Development of wearable assistive technologies for human mobility
开发用于人类移动的可穿戴辅助技术
  • 批准号:
    RGPIN-2020-04295
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Development of wearable assistive technologies for human mobility
开发用于人类移动的可穿戴辅助技术
  • 批准号:
    RGPIN-2020-04295
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Lower Limb Assistive Devices
下肢辅助器具
  • 批准号:
    RGPIN-2014-05557
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Lower Limb Assistive Devices
下肢辅助器具
  • 批准号:
    RGPIN-2014-05557
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Lower Limb Assistive Devices
下肢辅助器具
  • 批准号:
    RGPIN-2014-05557
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Study and development of an interface solution for mobility assistive devices
移动辅助器具接口解决方案的研究与开发
  • 批准号:
    499028-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program
Modeling and validating the mechanical behavior of dental implants components
模拟和验证牙种植体部件的机械行为
  • 批准号:
    478330-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program
Lower Limb Assistive Devices
下肢辅助器具
  • 批准号:
    RGPIN-2014-05557
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Lower Limb Assistive Devices
下肢辅助器具
  • 批准号:
    RGPIN-2014-05557
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

超声协同Pd-MTN2-χ@PMS通过生物正交原位化疗-声动力联合治疗晚期肢端黑色素瘤的研究
  • 批准号:
    82302217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磷酸化酪氨酸信号起始美洲大蠊附肢再生的生理功能与上游激活机制
  • 批准号:
    32370510
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向四肢瘫患者的仿人自平衡下肢外骨骼类脑决策与柔顺控制研究
  • 批准号:
    62373346
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
变刚度承载-耗能型连接装配式联肢复合墙协同工作机理与设计方法研究
  • 批准号:
    52308203
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金属硫蛋白抑制EPC铁死亡治疗糖尿病肢端缺血的效应和机制
  • 批准号:
    82370832
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Hands-free Control of an Assistive Robotic Arm for High Level Paralysis
用于高度瘫痪的辅助机械臂的免提控制
  • 批准号:
    10741948
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10417473
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10563135
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Dynamically Enhanced Passive and Semi-Passive Intelligent Lower Limb Wearable Assistive Devices
动态增强型被动和半被动智能下肢可穿戴辅助设备
  • 批准号:
    RGPIN-2020-06303
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the Operability of a Lower Limb Power Assistive Devices for a Person with Paraplegia
提高截瘫患者下肢动力辅助装置的可操作性
  • 批准号:
    22K12947
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了