Statistical Inference for Nonlinear Time Series and Parallel Statistical Computing
非线性时间序列的统计推断和并行统计计算
基本信息
- 批准号:170202-2012
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research topics are aspects of my continuing research in areas of statistical inference and model diagnostic analysis for linear and nonlinear time series as well as parallel statistical computing and its
applications. The first part of the proposed research is to continue to work on residual processes based on nonlinear time series models such as GARCH and related models. The second part is to study multivariate GARCH models, develop corresponding asymptotic theory of consistency and normality of QMLE, and provide adaptive LASSO procedure. The third part is to continue developing Rmpi package for parallel statistical computing and build new packages for multivariate GARCH simulation, spatial statistical simulation and long-term mortality prediction. The objectives of this research are fourfold.
1. Construct and study residual processes based on nonlinear time series models. A modified empirical process is proposed. New results for other nonlinear time series such as GARCH-in-mean and co-integrated regressions models will be attempted. Applications of the proposed empirical processes will be change-point problems, goodness-of-fit tests and symmetric tests.
2. Develop asymptotic theory for a GARCH-in-mean model, one of the often used models in financial mathematics.
3. Develop asymptotic theory for multivariate GARCH models as well as provide adaptive LASSO procedure
to eliminate un-needed parameters. An application is the portfolio optimization and risk assessment, a very important area of financial mathematics.
4. Continue developing Rmpi package. Rmpi is considered to be one of two core packages for High-Performance and Parallel Computing in R community. It is used widely in areas of financial mathematics, bioinformatics, and Monte Carlo simulation.
拟议的研究主题是我在线性和非线性时间序列的统计推断和模型诊断分析以及并行统计计算及其领域持续研究的方面。
应用程序。拟议研究的第一部分是继续研究基于非线性时间序列模型(如 GARCH 和相关模型)的残差过程。第二部分是研究多元GARCH模型,发展相应的QMLE一致性和正态性渐近理论,并提供自适应LASSO程序。第三部分是继续开发用于并行统计计算的Rmpi软件包,并构建用于多元GARCH模拟、空间统计模拟和长期死亡率预测的新软件包。这项研究的目标有四个。
1. 基于非线性时间序列模型构建和研究残差过程。提出了一种改进的经验过程。将尝试其他非线性时间序列的新结果,例如均值 GARCH 和协整回归模型。所提出的经验过程的应用将是变点问题、拟合优度检验和对称检验。
2. 开发 GARCH 均值模型的渐近理论,这是金融数学中常用的模型之一。
3. 开发多元GARCH模型的渐近理论并提供自适应LASSO程序
以消除不需要的参数。一个应用是投资组合优化和风险评估,这是金融数学的一个非常重要的领域。
4. 继续开发Rmpi包。 Rmpi 被认为是 R 社区中高性能和并行计算的两个核心包之一。它广泛应用于金融数学、生物信息学和蒙特卡罗模拟领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu, Hao其他文献
Identification and genomic analysis of temperate Halomonas bacteriophage vB_HmeY_H4907 from the surface sediment of the Mariana Trench at a depth of 8,900 m.
- DOI:
10.1128/spectrum.01912-23 - 发表时间:
2023-09-20 - 期刊:
- 影响因子:3.7
- 作者:
Su, Yue;Zhang, Wenjing;Liang, Yantao;Wang, Hongmin;Liu, Yundan;Zheng, Kaiyang;Liu, Ziqi;Yu, Hao;Ren, Linyi;Shao, Hongbing;Sung, Yeong Yik;Mok, Wen Jye;Wong, Li Lian;Zhang, Yu-Zhong;McMinn, Andrew;Wang, Min - 通讯作者:
Wang, Min
A molecular roadmap for induced multi-lineage trans-differentiation of fibroblasts by chemical combinations (vol 27, pg 386, 2017)
- DOI:
10.1038/cr.2017.77 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:44.1
- 作者:
Han, Xiaoping;Yu, Hao;Guo, Guoji - 通讯作者:
Guo, Guoji
Envonalkib versus crizotinib for treatment-naive ALK-positive non-small cell lung cancer: a randomized, multicenter, open-label, phase III trial.
- DOI:
10.1038/s41392-023-01538-w - 发表时间:
2023-08-14 - 期刊:
- 影响因子:39.3
- 作者:
Yang, Yunpeng;Min, Jie;Yang, Nong;Yu, Qitao;Cheng, Ying;Zhao, Yanqiu;Li, Manxiang;Chen, Hong;Ren, Shouan;Zhou, Jianying;Zhuang, Wu;Qin, Xintian;Cao, Lejie;Yu, Yan;Zhang, Jian;He, Jianxing;Feng, Jifeng;Yu, Hao;Zhang, Li;Fang, Wenfeng - 通讯作者:
Fang, Wenfeng
Description of a new species of Lysiteles Simon from Guizhou Province, China (Araneae: Thomisidae)
中国贵州省Lysiteles Simon一新种的描述(蜘蛛亚科:Thomisidae)
- DOI:
10.3906/zoo-1705-3 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:1
- 作者:
Yu, Hao;Li, Fengming;Jin, Zhenyu - 通讯作者:
Jin, Zhenyu
[Pharmacological actions and mechanism of saponins from Dioscorea nipponica].
- DOI:
10.19540/j.cnki.cjcmm.20171010.004 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:0
- 作者:
Yu, Hao;Du, Jian-Ling - 通讯作者:
Du, Jian-Ling
Yu, Hao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu, Hao', 18)}}的其他基金
Statistical Inference for Nonlinear Time Series and Parallel Statistical Computing
非线性时间序列的统计推断和并行统计计算
- 批准号:
170202-2012 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Statistical Inference for Nonlinear Time Series and Parallel Statistical Computing
非线性时间序列的统计推断和并行统计计算
- 批准号:
170202-2012 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Statistical Inference for Nonlinear Time Series and Parallel Statistical Computing
非线性时间序列的统计推断和并行统计计算
- 批准号:
170202-2012 - 财政年份:2013
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Statistical Inference for Nonlinear Time Series and Parallel Statistical Computing
非线性时间序列的统计推断和并行统计计算
- 批准号:
170202-2012 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Graduate Linux Lab for Advanced Statistical Computing
高级统计计算 Linux 研究生实验室
- 批准号:
439340-2013 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Residual processes of nonlinear time series models and unit root tests
非线性时间序列模型的残差过程和单位根检验
- 批准号:
170202-2007 - 财政年份:2011
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Residual processes of nonlinear time series models and unit root tests
非线性时间序列模型的残差过程和单位根检验
- 批准号:
170202-2007 - 财政年份:2010
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Residual processes of nonlinear time series models and unit root tests
非线性时间序列模型的残差过程和单位根检验
- 批准号:
170202-2007 - 财政年份:2009
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Quad-core workstations and web/email/file server
四核工作站和网络/电子邮件/文件服务器
- 批准号:
391339-2010 - 财政年份:2009
- 资助金额:
$ 0.87万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Residual processes of nonlinear time series models and unit root tests
非线性时间序列模型的残差过程和单位根检验
- 批准号:
170202-2007 - 财政年份:2008
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
边缘智能下基于张量计算的时空场景图高效推理方法研究
- 批准号:62302131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于消解证明的不完全知识推理可解释性研究及应用
- 批准号:62376066
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于知识推理的网络威胁归因技术研究
- 批准号:62372129
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
面向复杂场景的知识图谱多跳推理技术研究
- 批准号:62306156
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合符号推理与深度学习的复杂语境下实体关系抽取技术研究
- 批准号:62376033
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Adaptive Reproducible High-Dimensional Nonlinear Inference for Big Biological Data
生物大数据的自适应可再现高维非线性推理
- 批准号:
10159277 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Adaptive Reproducible High-Dimensional Nonlinear Inference for Big Biological Data
生物大数据的自适应可再现高维非线性推理
- 批准号:
9923688 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Statistical Inference for Nonlinear Time Series and Parallel Statistical Computing
非线性时间序列的统计推断和并行统计计算
- 批准号:
170202-2012 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Statistical Inference for Nonlinear Flutter
非线性颤振的统计推断
- 批准号:
465767-2014 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
University Undergraduate Student Research Awards
Nonlinear statistical inference and boundary crossing probabilities
非线性统计推断和边界交叉概率
- 批准号:
227197-2009 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual