Theory and Efficient Algorithms for Hard, Large Scale, Numerical Optimization
大规模硬数值优化的理论和高效算法
基本信息
- 批准号:9161-2013
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of my research will be the proper modelling of hard problems, and the design and implementation of efficient and robust numerical algorithms for large scale, hard, optimization problems. The problems I will deal with arise in many important applications, e.g. molecular conformation (MC), sensor network localization (SNL), inverse imaging and machine learning. In particular, many of these problems arise in the relaxations of hard combinatorial optimization problems. In many instances, the usual modelling approaches result in problems that are both large scale and ill-posed. Therefore, they are hard to solve numerically. Rather than being a disadvantage, one can often take advantage of the ill-posedness to get both a stable problem and one that is smaller in size. In particular, for problems such as SNL one can solve huge problems to high accuracy by exploiting the hidden degeneracy. I plan on applying this technique to MC problems with noisy data as well as to protein design problems.
The techniques that I use involve continuous optimization, nonlinear programming (NLP) and in particular, semidefinite programming (SDP). For SDP, my research contributions involve theory, algorithms, and applications, i.e., they include strong duality results, stable algorithms, and the study of relaxations for various applications. Some of the codes that I have designed for the standard form Linear Programming (LP) model have already been implemented in MAPLE. I plan to implement algorithms for more general LP models that include both upper and lower bounds on the variables. As well I plan on implementing codes that solve more general NLP problems. For the NLP problems, I use algorithms for generalized trust region problems to solve large scale unconstrained minimization, as well as solve general NLP using stable sequential quadratic programming methods. The success of these implementations means that researchers in my field will have access to stable, high accuracy, algorithms.
我的研究重点是对困难问题进行正确建模,以及针对大规模困难优化问题设计和实现高效且鲁棒的数值算法。我将处理的问题出现在许多重要的应用中,例如分子构象(MC)、传感器网络定位(SNL)、逆向成像和机器学习。特别是,许多这样的问题出现在硬组合优化问题的松弛中。在许多情况下,通常的建模方法会导致大规模且不适定的问题。因此,它们很难用数值方法求解。人们通常可以利用不适定性来获得稳定的问题和规模较小的问题,而不是成为一种劣势。 特别是,对于 SNL 这样的问题,人们可以通过利用隐藏的简并性来高精度地解决巨大的问题。我计划将此技术应用于带有噪声数据的 MC 问题以及蛋白质设计问题。
我使用的技术涉及连续优化、非线性规划 (NLP),特别是半定规划 (SDP)。 对于SDP,我的研究贡献涉及理论、算法和应用,即包括强对偶性结果、稳定算法以及各种应用的松弛研究。我为标准形式线性规划 (LP) 模型设计的一些代码已经在 MAPLE 中实现。我计划为更通用的 LP 模型实现算法,其中包括变量的上限和下限。我还计划实现解决更一般 NLP 问题的代码。对于 NLP 问题,我使用广义信赖域问题的算法来解决大规模无约束最小化问题,并使用稳定的顺序二次规划方法来解决一般 NLP。这些实现的成功意味着我所在领域的研究人员将能够获得稳定、高精度的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolkowicz, Henry其他文献
On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming
二次矩阵规划半定松弛的等价
- DOI:
10.1287/moor.1100.0473 - 发表时间:
2011-02 - 期刊:
- 影响因子:1.7
- 作者:
Ding, Yichuan;Ge, Dongdong;Wolkowicz, Henry - 通讯作者:
Wolkowicz, Henry
Low-rank matrix completion using nuclear norm minimization and facial reduction
- DOI:
10.1007/s10898-017-0590-1 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:1.8
- 作者:
Huang, Shimeng;Wolkowicz, Henry - 通讯作者:
Wolkowicz, Henry
Robust Interior Point Method for Quantum Key Distribution Rate Computation
- DOI:
10.22331/q-2022-09-08-792 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:6.4
- 作者:
Hu, Hao;Im, Jiyoung;Wolkowicz, Henry - 通讯作者:
Wolkowicz, Henry
Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs.
- DOI:
10.1007/s10107-022-01890-9 - 发表时间:
2023 - 期刊:
- 影响因子:2.7
- 作者:
Hu, Hao;Sotirov, Renata;Wolkowicz, Henry - 通讯作者:
Wolkowicz, Henry
Sensor Network Localization, Euclidean Distance Matrix completions, and graph realization
- DOI:
10.1007/s11081-008-9072-0 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:2.1
- 作者:
Ding, Yichuan;Krislock, Nathan;Wolkowicz, Henry - 通讯作者:
Wolkowicz, Henry
Wolkowicz, Henry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolkowicz, Henry', 18)}}的其他基金
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
- 批准号:
RGPIN-2018-04028 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
- 批准号:
RGPIN-2018-04028 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
- 批准号:
RGPIN-2018-04028 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
- 批准号:
RGPIN-2018-04028 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
- 批准号:
RGPIN-2018-04028 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Theory and Efficient Algorithms for Hard, Large Scale, Numerical Optimization
大规模硬数值优化的理论和高效算法
- 批准号:
9161-2013 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Theory and Efficient Algorithms for Hard, Large Scale, Numerical Optimization
大规模硬数值优化的理论和高效算法
- 批准号:
9161-2013 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Workshop on Nonlinear Optimization Algorithms and Industrial Applications
非线性优化算法及工业应用研讨会
- 批准号:
491740-2015 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Regional Office Discretionary Funds
Theory and Efficient Algorithms for Hard, Large Scale, Numerical Optimization
大规模硬数值优化的理论和高效算法
- 批准号:
9161-2013 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Theory and Efficient Algorithms for Hard, Large Scale, Numerical Optimization
大规模硬数值优化的理论和高效算法
- 批准号:
9161-2013 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
高效公平的个性化联邦学习算法与理论
- 批准号:62376110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
指标多项式的Groebner基有限化理论和高效标准型算法及其应用
- 批准号:12371508
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于切换机制的平均场随机微分方程的高效数值算法及其理论分析
- 批准号:12271368
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
几类大规模绝对值方程组的高效迭代算法及理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性多物理场耦合问题的高效算法与理论分析
- 批准号:12231003
- 批准年份:2022
- 资助金额:235 万元
- 项目类别:重点项目
相似海外基金
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
- 批准号:
2143625 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
- 批准号:
RGPIN-2016-05942 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity and practice of verified and efficient algorithms for dynamical systems
动力系统的计算复杂性和经过验证的高效算法的实践
- 批准号:
20K19744 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
- 批准号:
2112694 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant