High-performance and scalable communication subsystems for exascale computing
用于百亿亿次计算的高性能和可扩展通信子系统
基本信息
- 批准号:238964-2011
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-Performance Computing (HPC) is the key to many scientific discoveries and engineering innovations. It is used to tackle computationally-intensive problems in fields as diverse as drug discovery, modeling of global climate system, seismic processing for oil and gas, green energy, genomics and bioinformatics, and astrophysics. Scientific/engineering simulations are mainly written with the Message-Passing Interface (MPI) library. Parallel processes in these simulations compute on their local data while extensively communicating with each other through the MPI library. Communication adversely affects the performance and scalability of MPI applications running on HPC clusters. With the availability of multi-core and soon many-core architectures offering increasing parallelism at all levels, HPC clusters consisting of hundreds of thousands of nodes with millions of cores and complex network topologies are poised to break the Exaflops (10^18 floating point operations per second) barrier in the coming years. With the emergence of such highly hierarchical clusters, MPI has to be optimized for performance and scalability in order to cope with the ever-increasing demands of large-scale simulations. The proposed research is highly original and innovative in the sense that it addresses key issues in MPI, by including topology-awareness for process mapping, by incorporating dedicated queues for partner processes, by quality of service provisioning partner/non-partner traffic, and by developing fiber-based asynchronous progression techniques. The outcome of this research will be relevant to various sectors in Canada, including Environment Canada, Compute Canada, Canada Genome Sciences Centre, oil and gas industries, and ultimately the Canadian public at large. It is expected that the findings from this research will have significant impact on the target community, and that it will lead to new directions for future research. The proposed research is ideal for training HQP in that it has a strong foundation that translates immediately into practical applications and implementations. There is a high demand for graduates in HPC and networking, and the HQP trained will be well positioned to compete for jobs in academia and industry.
高性能计算 (HPC) 是许多科学发现和工程创新的关键。它用于解决药物发现、全球气候系统建模、石油和天然气地震处理、绿色能源、基因组学和生物信息学以及天体物理学等领域的计算密集型问题。科学/工程模拟主要使用消息传递接口(MPI)库编写。这些模拟中的并行进程计算本地数据,同时通过 MPI 库相互广泛通信。通信会对 HPC 集群上运行的 MPI 应用程序的性能和可扩展性产生不利影响。随着多核和即将推出的众核架构的出现,在各个级别上提供越来越多的并行性,由数十万个节点、数百万个核心和复杂的网络拓扑组成的 HPC 集群有望突破 Exaflops(10^18 浮点运算)每秒)未来几年的障碍。随着这种高度分层集群的出现,MPI 必须针对性能和可扩展性进行优化,以应对大规模模拟不断增长的需求。拟议的研究具有高度原创性和创新性,因为它解决了 MPI 中的关键问题,包括流程映射的拓扑感知、合并合作伙伴流程的专用队列、提供合作伙伴/非合作伙伴流量的服务质量以及开发基于光纤的异步进展技术。这项研究的成果将与加拿大的各个部门相关,包括加拿大环境部、加拿大计算部、加拿大基因组科学中心、石油和天然气行业,并最终与加拿大广大公众相关。预计这项研究的结果将对目标群体产生重大影响,并将为未来的研究带来新的方向。拟议的研究非常适合培训 HQP,因为它具有可立即转化为实际应用和实施的坚实基础。 HPC 和网络领域对毕业生的需求很高,受过培训的 HQP 将能够很好地竞争学术界和工业界的职位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Afsahi, Ahmad其他文献
Accelerating Deep Learning Using Interconnect-Aware UCX Communication for MPI Collectives
- DOI:
10.1109/mm.2022.3148670 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:3.6
- 作者:
Temucin, Yltan Hassan;Sojoodi, Amir Hossein;Afsahi, Ahmad - 通讯作者:
Afsahi, Ahmad
Afsahi, Ahmad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Afsahi, Ahmad', 18)}}的其他基金
Efficient and Scalable Communication and System Software for Exascale Computing
用于百亿亿次计算的高效且可扩展的通信和系统软件
- 批准号:
RGPIN-2016-05389 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Efficient and Scalable Communication and System Software for Exascale Computing
用于百亿亿次计算的高效且可扩展的通信和系统软件
- 批准号:
RGPIN-2016-05389 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Efficient and Scalable Communication and System Software for Exascale Computing
用于百亿亿次计算的高效且可扩展的通信和系统软件
- 批准号:
RGPIN-2016-05389 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Efficient and Scalable Communication and System Software for Exascale Computing
用于百亿亿次计算的高效且可扩展的通信和系统软件
- 批准号:
RGPIN-2016-05389 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Efficient and Scalable Communication and System Software for Exascale Computing
用于百亿亿次计算的高效且可扩展的通信和系统软件
- 批准号:
RGPIN-2016-05389 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Efficient and Scalable Communication and System Software for Exascale Computing
用于百亿亿次计算的高效且可扩展的通信和系统软件
- 批准号:
RGPIN-2016-05389 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
High-performance and scalable communication subsystems for exascale computing
用于百亿亿次计算的高性能和可扩展通信子系统
- 批准号:
238964-2011 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
High-performance and scalable communication subsystems for exascale computing
用于百亿亿次计算的高性能和可扩展通信子系统
- 批准号:
238964-2011 - 财政年份:2013
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
High-performance and scalable communication subsystems for exascale computing
用于百亿亿次计算的高性能和可扩展通信子系统
- 批准号:
238964-2011 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
High-performance and scalable communication subsystems for exascale computing
用于百亿亿次计算的高性能和可扩展通信子系统
- 批准号:
238964-2011 - 财政年份:2011
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
- 批准号:62302202
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于可扩展功能单元的液晶软驱动机械超材料研究
- 批准号:52373173
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
- 批准号:62306062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DIrectional and SCalable (DISC) Microelectrode Array for Speech Decoding
用于语音解码的定向和可扩展 (DISC) 微电极阵列
- 批准号:
10513043 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Examining the electroencephalographic fingerprint of default mode network hyperconnectivity for scalable and personalized neurofeedback in schizophrenia
检查默认模式网络超连接的脑电图指纹,以实现精神分裂症的可扩展和个性化神经反馈
- 批准号:
10509002 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Sub-100 nm and scalable self-therapeutic nanoparticles to target autophagy in pancreatic cancer
亚 100 nm 且可扩展的自我治疗纳米颗粒可靶向胰腺癌的自噬
- 批准号:
10604147 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Examining the electroencephalographic fingerprint of default mode network hyperconnectivity for scalable and personalized neurofeedback in schizophrenia
检查默认模式网络超连接的脑电图指纹,以实现精神分裂症的可扩展和个性化神经反馈
- 批准号:
10675554 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Health 360x Clinical Research Platform for Scalable Access to Clinical Trials
Health 360x 临床研究平台可扩展临床试验的访问
- 批准号:
10624966 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别: