Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
基本信息
- 批准号:5149-2010
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to investigate the regularity of solutions to various partial differential equations that model phenomena important to physicists and engineers. For example, the Monge-Ampere equation models curvature in space time and string theories in theoretical physics and the Navier-Stokes equations model the motions of fluids in weather phenomena, airplanes and vessels. From a theoretical perspective, it is important to know that the model we are using satisfies the regularity properties observed of the actual phenomenon being modelled. Such investigations involve an understanding of singular integrals and the inequalities they satisfy.
我们建议研究各种偏微分方程解的规律性,这些偏微分方程对物理学家和工程师来说很重要的现象建模。例如,蒙日-安培方程对时空曲率和理论物理中的弦理论进行建模,纳维-斯托克斯方程对天气现象、飞机和船舶中的流体运动进行建模。从理论角度来看,重要的是要知道我们使用的模型满足所建模的实际现象所观察到的规律性。此类研究涉及对奇异积分及其满足的不等式的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sawyer, Eric其他文献
The effect of surface finish on tensile behavior of additively manufactured tensile bars
- DOI:
10.1007/s10853-015-9702-9 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:4.5
- 作者:
Everhart, Wes;Sawyer, Eric;Brown, Ben - 通讯作者:
Brown, Ben
Sawyer, Eric的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sawyer, Eric', 18)}}的其他基金
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
热粘流中两类非线性声波方程的定性研究
- 批准号:12301270
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
导数非线性耗散薛定谔方程解的长时间行为
- 批准号:12361051
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
两类非线性椭圆方程组解的存在性研究
- 批准号:12301134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自旋几何中含有临界指数的非线性Dirac方程的变分学研究
- 批准号:12371117
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
两类非线性发展方程组的动力学行为研究
- 批准号:12301294
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2010
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Topics in Nonlinear Subelliptic Partial Differential Equations
非线性亚椭圆偏微分方程主题
- 批准号:
0800522 - 财政年份:2008
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant