Dynamics of delay differential equations: theory and applications
时滞微分方程动力学:理论与应用
基本信息
- 批准号:249679-2009
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2012
- 资助国家:加拿大
- 起止时间:2012-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Delay differential equations have arisen naturally in many applications such as mathematical ecology, population biology, and neural networks. It is well known that, both in biological and artificial neural networks, delay arises because of the processing of information. Delay differential equations are infinite dimensional dynamical systems and hence are more challenging and interesting to study than ordinary differential equations as delays induce richer dynamics. The purpose of this project is to make significant contributions to the understanding of the local and global dynamics of delay differential equations, especially their global attractors.
在数学生态学,人群生物学和神经网络等许多应用中,自然而然地出现了延迟微分方程。众所周知,在生物学和人工神经网络中,由于信息的处理而出现延迟。延迟微分方程是无限尺寸动力学系统,因此比普通微分方程更具挑战性和有趣的研究,因为延迟引起了更丰富的动力学。该项目的目的是为理解延迟微分方程的本地和全球动态做出重大贡献,尤其是其全球吸引子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen, Yuming其他文献
Astaxanthin-loaded polymer-lipid hybrid nanoparticles (ATX-LPN): assessment of potential otoprotective effects (vol 18, 53, 2020)
- DOI:
10.1186/s12951-020-00627-0 - 发表时间:
2020-05-19 - 期刊:
- 影响因子:10.2
- 作者:
Gu, Jiayi;Chen, Yuming;Wu, Hao - 通讯作者:
Wu, Hao
Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials
- DOI:
10.1039/c4ee00148f - 发表时间:
2014-08-01 - 期刊:
- 影响因子:32.5
- 作者:
Chen, Yuming;Li, Xiaoyan;Zhou, Limin - 通讯作者:
Zhou, Limin
Synthesis of large scale graphene oxide using plasma enhanced chemical vapor deposition method and its application in humidity sensing
等离子体增强化学气相沉积法合成大尺寸氧化石墨烯及其在湿度传感中的应用
- DOI:
10.1063/1.4942999 - 发表时间:
2016-03-14 - 期刊:
- 影响因子:3.2
- 作者:
Liu, Yang;Chen, Yuming - 通讯作者:
Chen, Yuming
Higher S-adenosylhomocysteine and lower ratio of S-adenosylmethionine to S-adenosylhomocysteine were more closely associated with increased risk of subclinical atherosclerosis than homocysteine.
- DOI:
10.3389/fnut.2022.918698 - 发表时间:
2022 - 期刊:
- 影响因子:5
- 作者:
Xiao, Jinghe;You, Yiran;Chen, Xu;Tang, Yi;Chen, Yuming;Liu, Qiannan;Liu, Zhaomin;Ling, Wenhua - 通讯作者:
Ling, Wenhua
A reassortment vaccine candidate as the improved formulation to induce protection against very virulent infectious bursal disease virus
- DOI:
10.1016/j.vaccine.2014.01.042 - 发表时间:
2014-03-14 - 期刊:
- 影响因子:5.5
- 作者:
Qi, Xiaole;Chen, Yuming;Wang, Xiaomei - 通讯作者:
Wang, Xiaomei
Chen, Yuming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen, Yuming', 18)}}的其他基金
Effects of heterogeneity on population and epidemic dynamics
异质性对人口和流行病动态的影响
- 批准号:
RGPIN-2019-05892 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Effects of heterogeneity on population and epidemic dynamics
异质性对人口和流行病动态的影响
- 批准号:
RGPIN-2019-05892 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Effects of heterogeneity on population and epidemic dynamics
异质性对人口和流行病动态的影响
- 批准号:
RGPIN-2019-05892 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Effects of heterogeneity on population and epidemic dynamics
异质性对人口和流行病动态的影响
- 批准号:
RGPIN-2019-05892 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Delayed Systems with Applications to Ecoepidemiology
延迟系统动力学及其在生态流行病学中的应用
- 批准号:
RGPIN-2014-04420 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Delayed Systems with Applications to Ecoepidemiology
延迟系统动力学及其在生态流行病学中的应用
- 批准号:
RGPIN-2014-04420 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Delayed Systems with Applications to Ecoepidemiology
延迟系统动力学及其在生态流行病学中的应用
- 批准号:
RGPIN-2014-04420 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Delayed Systems with Applications to Ecoepidemiology
延迟系统动力学及其在生态流行病学中的应用
- 批准号:
RGPIN-2014-04420 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Delayed Systems with Applications to Ecoepidemiology
延迟系统动力学及其在生态流行病学中的应用
- 批准号:
RGPIN-2014-04420 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of delay differential equations: theory and applications
时滞微分方程动力学:理论与应用
- 批准号:
249679-2009 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
非线性奇异延迟微分方程的块边值方法研究
- 批准号:12201181
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
随机延迟微分方程的遍历数值方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机延迟微分方程的遍历数值方法
- 批准号:12201552
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非线性奇异延迟微分方程的块边值方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
几类非全局Lipschitz条件下随机延迟微分方程的数值分析
- 批准号:
- 批准年份:2020
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Delay differential equations: theory and applications of periodicity, multistability and global dynamics
时滞微分方程:周期性、多稳定性和全局动力学的理论和应用
- 批准号:
105588-2011 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual