Generalized linear models with zero-inflation and/or ever-dispersion with covariate measurement errors, methods for longitudinal and clustered data and finite mixture models

具有协变量测量误差的零膨胀和/或不断离散的广义线性模型、纵向和聚类数据的方法以及有限混合模型

基本信息

  • 批准号:
    8593-2008
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

Research will be pursued in a number of related areas in which I have been working in the last several years, such as: generalized linear models, count data, proportions and contingency tables with over/under dispersion, zero-inflated generalized linear models, correlated familial and survey data, survival models, longitudinal data analysis and finite mixture models. Research will also be pursued on inference procedures for generalized linear models, specifically for binomial and Poisson regression models with over dispersion and /or zero-inflation involving missing data, model misspecification and covariate measurement errors. Multivariate binary and Poisson (specifically bivariate Poisson) regression models will be studied. Goodness of fit tests and homogeneity testing has been and will be an important area of research. Epidemiological risk measures, such as, risk difference, risk ratio and relative risks for clustered correlated binary data will be studied and new procedures will be developed and compared. Methods for longitudinal Binary and Poisson data will be studied and new procedures involving GEEs will be developed and compared. Random effects, mixed effects models (GLMMs), and homogeneity testing will be studied in this context. Inference on the choice of variance function in semiparametric methodology, such as quasi-likelihood, extended quasi-likelihood, double extended quasi-likelihood will be studied. Inference procedures for the class of skew-normal ( a model providing specific departure from normality) distributions will be studied. Inference for common odds ratio in several 2x2 contingency tables will be studied. Inference procedures, that is, point and interval estimation and hypothesis testing procedures will be developed and evaluated. Tools, such as, maximum likelihood estimation, quasi-likelihood, extended quasi-likelihood, double extended quasi-likelihood, score tests, likelihood ratio tests and bootstrapp tests will be used and evaluated both theoretically and empirically. Rresearch results have and will have direct impact on varieties of fields of application, such as biology, Epidemiology, medical sciences and Engineering.
在过去几年中我一直在工作的许多相关领域将进行研究,例如:广义线性模型,计数数据,比例和应急表,具有过度/不足,零充气的广义线性模型,相关的家族和调查数据,生存模型,纵向数据分析和有限的混合模型。还将针对广义线性模型的推理程序进行研究,特别是针对二项式和泊松回归模型,具有过度分散和 /或零通货膨胀,涉及丢失的数据,模型错误指定和协变量测量误差。将研究多变量二元和泊松(特别是双变量泊松)回归模型。拟合测试和均匀性测试的优点一直是研究的重要领域。将研究和比较新程序,并将开发并比较新程序,例如,风险差异,风险差异和相对风险,例如风险差异,风险差异和相对风险。将研究纵向二元和泊松数据的方法,并将开发涉及GEE的新程序。在这种情况下,将研究随机效应,混合效应模型(GLMM)和同质性测试。将研究半参数方法中方差函数的选择,例如准类,延长的准类样,双重延长的准类样本。将研究偏斜正常类(提供特定偏离正常性的模型)分布的推理程序。将研究几个2x2应急表中常见优势比的推断。推理程序将开发和评估,即点和间隔估计以及假设测试程序。将使用工具,例如,最大似然估计,准类,扩展的准类型,双重扩展的准类样,得分测试,可能性比率测试和Bootstrapp测试,并在理论上和经验上都使用。研究结果对生物学,流行病学,医学科学和工程等各种领域的品种有直接影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul, Sudhir其他文献

Constitutive Production of Catalytic Antibodies to a Staphylococcus aureus Virulence Factor and Effect of Infection
  • DOI:
    10.1074/jbc.m111.330043
  • 发表时间:
    2012-03-23
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Brown, Eric L.;Nishiyama, Yasuhiro;Paul, Sudhir
  • 通讯作者:
    Paul, Sudhir
Catalytic immunoglobulin gene delivery in a mouse model of Alzheimer's disease: prophylactic and therapeutic applications.
  • DOI:
    10.1007/s12035-014-8691-z
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Kou, Jinghong;Yang, Junling;Lim, Jeong-Eun;Pattanayak, Abhinandan;Song, Min;Planque, Stephanie;Paul, Sudhir;Fukuchi, Ken-ichiro
  • 通讯作者:
    Fukuchi, Ken-ichiro
A covalent HIV vaccine: is there hope for the future?
  • DOI:
    10.2217/17460794.4.1.7
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Paul, Sudhir;Planque, Stephanie A.;Hanson, Carl V.
  • 通讯作者:
    Hanson, Carl V.
The generalized linear model and extensions: a review and some biological and environmental applications
  • DOI:
    10.1002/env.849
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Paul, Sudhir;Saha, Krishna K.
  • 通讯作者:
    Saha, Krishna K.
Catalytic antibodies to amyloid β peptide in defense against Alzheimer disease
  • DOI:
    10.1016/j.autrev.2008.03.004
  • 发表时间:
    2008-05-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Taguchi, Hiroaki;Planque, Stephanie;Paul, Sudhir
  • 通讯作者:
    Paul, Sudhir

Paul, Sudhir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul, Sudhir', 18)}}的其他基金

Discrete and/or Longitudinal Data (small/big) analysis and The Behrens-Fisher problem
离散和/或纵向数据(小/大)分析和 Behrens-Fisher 问题
  • 批准号:
    RGPIN-2018-04558
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete and/or Longitudinal Data (small/big) analysis and The Behrens-Fisher problem
离散和/或纵向数据(小/大)分析和 Behrens-Fisher 问题
  • 批准号:
    RGPIN-2018-04558
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete and/or Longitudinal Data (small/big) analysis and The Behrens-Fisher problem
离散和/或纵向数据(小/大)分析和 Behrens-Fisher 问题
  • 批准号:
    RGPIN-2018-04558
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete and/or Longitudinal Data (small/big) analysis and The Behrens-Fisher problem
离散和/或纵向数据(小/大)分析和 Behrens-Fisher 问题
  • 批准号:
    RGPIN-2018-04558
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete and/or Longitudinal Data (small/big) analysis and The Behrens-Fisher problem
离散和/或纵向数据(小/大)分析和 Behrens-Fisher 问题
  • 批准号:
    RGPIN-2018-04558
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
GLM, GLMM, GEE for Correlated Discrete Data with Over-dispersion, Zero-inflation, Measurement Error and Misspecification
GLM、GLMM、GEE,用于具有过度离散、零膨胀、测量误差和错误指定的相关离散数据
  • 批准号:
    8593-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
GLM, GLMM, GEE for Correlated Discrete Data with Over-dispersion, Zero-inflation, Measurement Error and Misspecification
GLM、GLMM、GEE,用于具有过度离散、零膨胀、测量误差和错误指定的相关离散数据
  • 批准号:
    8593-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
GLM, GLMM, GEE for Correlated Discrete Data with Over-dispersion, Zero-inflation, Measurement Error and Misspecification
GLM、GLMM、GEE,用于具有过度离散、零膨胀、测量误差和错误指定的相关离散数据
  • 批准号:
    8593-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
GLM, GLMM, GEE for Correlated Discrete Data with Over-dispersion, Zero-inflation, Measurement Error and Misspecification
GLM、GLMM、GEE,用于具有过度离散、零膨胀、测量误差和错误指定的相关离散数据
  • 批准号:
    8593-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
GLM, GLMM, GEE for Correlated Discrete Data with Over-dispersion, Zero-inflation, Measurement Error and Misspecification
GLM、GLMM、GEE,用于具有过度离散、零膨胀、测量误差和错误指定的相关离散数据
  • 批准号:
    8593-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

线性热超构材料的非互易传热性能
  • 批准号:
    12302171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性标量化的转动黑洞解及其相关性质研究
  • 批准号:
    12305064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机噪声下分数阶关联非线性系统的分散主动抗干扰控制
  • 批准号:
    62303397
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性耦合问题的各向异性高精度有限元方法新模式研究
  • 批准号:
    12301474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
化学键对硫代硼酸盐结构及非线性光学性能的调控研究
  • 批准号:
    22305264
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Power and sample size for generalized linear models
广义线性模型的功效和样本量
  • 批准号:
    10680962
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Generalized linear mixed models for copula-based bivariate survival analysis
基于联结的二元生存分析的广义线性混合模型
  • 批准号:
    22K11948
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MSA: Understanding biological invasions across spatial scales using Phylogenetic Generalized Linear Mixed Models (PGLMM)
MSA:使用系统发育广义线性混合模型 (PGLMM) 了解跨空间尺度的生物入侵
  • 批准号:
    2213567
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Modeling a Neural Circuit for Flexible Control of Innate Behaviors
建模神经回路以灵活控制先天行为
  • 批准号:
    10352474
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
Modeling a Neural Circuit for Flexible Control of Innate Behaviors
建模神经回路以灵活控制先天行为
  • 批准号:
    10576922
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了