Prior knowledge elicitation and policy explanation for decision-theoretic planning and learning
决策理论规划和学习的先验知识获取和政策解释
基本信息
- 批准号:312388-2008
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Consider spoken-dialogue managers, mobile robot controllers, automated monitoring/prompting systems for seniors with dementia or any other complex system that must accomplish a fairly complicated task. The conception of such systems is particularly challenging due to the noisy nature of the sensors (e.g., noisy speech recognition, noisy sonars) as well as the uncertain and interdependent effects of system actions (e.g., uncertain effect of prompts on seniors, interdependent and noisy motor controls in robotics). As a result, it is generally impossible to design complex robust systems by hand coding control policies. The fields of decision-theoretic planning and learning have made significant advances in the development of automated techniques to generate robust control policies that could revolutionize the next generation of computer systems. Instead of programming a policy directly, an algorithm is used to optimize a policy based on a model or simulator of the system and its environment. However, eliciting the domain knowledge necessary to specify a model or simulator, and validating/explaining the resulting policy are two major bottlenecks ignored by the research community that are holding back the adoption of this disruptive technology. Knowledge elicitation and policy explanation are particularly challenging since non-technical domain experts tend to have partial and imprecise knowledge, and often need high-level explanations of the policy where technical details are abstracted away to better convey the intuition. Hence, the objectives of this research are i) to design general and principled techniques to elicit and encode partial/imprecise domain knowledge about the system, the environment and the desired policy, ii) to develop algorithms that can exploit as much domain knowledge as possible to improve scalability, and iii) to create generic tools to validate and explain the decisions made by a policy at an appropriate level for developers and non-technical experts.
考虑使用痴呆症的老年人或任何其他必须完成相当复杂的任务的老年人的口语管理器,移动机器人控制器,自动监视/提示系统。 由于传感器的嘈杂性(例如,语音识别,嘈杂的声纳)以及系统动作的不确定和相互依存的影响(例如,提示对机器人中的互依赖和嘈杂的运动员的提示对机器人中的嘈杂效果),这种系统的概念尤其具有挑战性。 结果,通常不可能通过手动编码控制策略设计复杂的鲁棒系统。 决策理论计划和学习的领域在开发自动化技术方面取得了重大进步,以生成可以彻底改变下一代计算机系统的强大控制政策。 算法不是直接对策略进行编程,而是用于优化基于系统及其环境的模型或模拟器的策略。 但是,引起指定模型或模拟器所需的领域知识,并验证/解释由此产生的策略是研究社区所忽略的两个主要瓶颈,这阻碍了这种颠覆性技术的采用。 知识的启发和政策解释尤其具有挑战性,因为非技术领域专家倾向于具有部分和不精确的知识,并且通常需要对政策的高级解释,在这些政策中,将技术细节抽象出来以更好地传达直觉。 因此,这项研究的目标是i)设计一般和原则性的技术来激发和编码有关系统,环境和所需政策的部分/不精确域知识,ii)开发算法,这些算法可以利用尽可能多的领域知识来利用尽可能提高可扩展性的知识,以及III),以验证和解释由适当级别的策略来验证和解释专家的一般决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Poupart, Pascal其他文献
Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks
前馈和循环和积网络的在线结构学习
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kalra, Agastya;Rashwan, Abdullah;Hsu, Wei-Shou;Poupart, Pascal;Doshi, Prashant;Trimponias, Georgios - 通讯作者:
Trimponias, Georgios
Measuring Life Space in Older Adults with Mild-to-Moderate Alzheimer's Disease Using Mobile Phone GPS
- DOI:
10.1159/000355669 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:3.5
- 作者:
Tung, James Yungjen;Rose, Rhiannon Victoria;Poupart, Pascal - 通讯作者:
Poupart, Pascal
Affective Neural Response Generation
- DOI:
10.1007/978-3-319-76941-7_12 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:0
- 作者:
Asghar, Nabiha;Poupart, Pascal;Mou, Lili - 通讯作者:
Mou, Lili
Automated handwashing assistance for persons with dementia using video and a partially observable Markov decision process
- DOI:
10.1016/j.cviu.2009.06.008 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:4.5
- 作者:
Hoey, Jesse;Poupart, Pascal;Mihailidis, Alex - 通讯作者:
Mihailidis, Alex
Poupart, Pascal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Poupart, Pascal', 18)}}的其他基金
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Reinforcement Learning for Sports Analytics
体育分析的强化学习
- 批准号:
521357-2018 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Strategic Projects - Group
Reinforcement Learning for Sports Analytics
体育分析的强化学习
- 批准号:
521357-2018 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Strategic Projects - Group
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
多层次知识启发的高光谱影像农业地物细粒度分类
- 批准号:62376225
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
生物先验知识启发的单细胞分析方法开发及在大脑皮层发育中的应用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物先验知识启发的单细胞分析方法开发及在大脑皮层发育中的应用
- 批准号:32100512
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
知识迁移与因果推理启发的小样本害虫图像识别研究
- 批准号:32171888
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
脑启发式无参考影像质量评价技术研究
- 批准号:61772388
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Prior knowledge elicitation and policy explanation for decision-theoretic planning and learning
决策理论规划和学习的先验知识获取和政策解释
- 批准号:
312388-2008 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Prior knowledge elicitation and policy explanation for decision-theoretic planning and learning
决策理论规划和学习的先验知识获取和政策解释
- 批准号:
312388-2008 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Prior knowledge elicitation and policy explanation for decision-theoretic planning and learning
决策理论规划和学习的先验知识获取和政策解释
- 批准号:
312388-2008 - 财政年份:2009
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
An epidemiologic assessment of the risk of acute lumbar disc herniation from chiropractic care.
对脊椎按摩疗法引起的急性腰椎间盘突出症风险的流行病学评估。
- 批准号:
185192 - 财政年份:2009
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship Programs
Rituximab Elicitation of Tumor Specific T-cell Responses in Lymphoma Patients
利妥昔单抗在淋巴瘤患者中引发肿瘤特异性 T 细胞反应
- 批准号:
8068292 - 财政年份:2008
- 资助金额:
$ 1.82万 - 项目类别: