Semiparametric learning in signal processing, communication systems and pattern recognition
信号处理、通信系统和模式识别中的半参数学习
基本信息
- 批准号:8131-2007
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2009
- 资助国家:加拿大
- 起止时间:2009-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Learning is the process of moving from concrete examples (training data) to models that can explain and predict the underlying process. Formally learning is the problem of recovering (from the training data) a mapping from input signals to output ones. The accuracy of the mapping to be learned from the data depends on the a priori knowledge of the process. Fully nonparametric learning methods do not need any a priori information and therefore are robust and do not suffer from risk of misspecification. On the other hand they exhibit slow learning rate, which deteriorates considerably with the dimensionality of the underlying objects, e.g., images. In contrast, classical parametric learning algorithms carries a great risk of misspecification, but if they are correctly specified they will enjoy fast learning rates with no deterioration caused by multivariate data. These two basic learning schemes have found numerous applications in such diverse areas as: medical diagnostics, data mining, qualitative economics, communication engineering, speech and pattern recognition. In practice, the dimensionality and sparseness of data force us to accept an intermediate model (semiparametric model) which lies between parametric and fully nonparametric cases. The parametric part of the model defines parameters of finite-dimensional projections of multivariate nonlinearities, whereas nonlinear characteristics run through a nonparametric class of univariate functions. This semiparametric model allows one to design practical learning algorithms which share the efficiency of parametric modeling while preserving the high flexibility of the nonparametric case, i.e., we wish to take the best of both worlds. In fact, in semiparametric models the curse of dimensionality can be entirely eliminated. The purpose of this research is twofold. First we propose to examine theoretical advancements, numerical implementations, and testing the accuracy of specific learning schemes within the aforementioned semiparametric framework. Second, we intend to apply this methodology to concrete cases beyond the traditional AI field such as: signal processing, communication systems, pattern recognition , and image analysis.
学习是从具体示例(培训数据)转变为可以解释和预测基础过程的模型的过程。 正式学习是(从培训数据中)从输入信号到输出信号的映射的问题。从数据中学到的映射的准确性取决于该过程的先验知识。完全非参数学习方法不需要任何先验信息,因此很健壮,并且不会遭受指定的风险。另一方面,它们表现出缓慢的学习率,这会随着基础物体的维度(例如图像)的维度大大恶化。相比之下,经典的参数学习算法具有错误指定的很大风险,但是如果正确指定了它们,他们将享受快速学习率,而不会导致多变量数据引起的恶化。这两个基本的学习方案在不同领域发现了许多应用:医学诊断,数据挖掘,定性经济学,通信工程,语音和模式识别。实际上,数据的维度和稀疏性迫使我们接受参数和完全非参数案例之间的中间模型(半参数模型)。该模型的参数部分定义了多元非线性的有限维投影的参数,而非线性特征则通过非参数类单变量函数运行。这种半参数模型允许设计实用的学习算法,这些算法具有参数建模的效率,同时保留非参数案例的高灵活性,即我们希望尽可能地利用这两个世界。实际上,在半参数模型中,可以完全消除维度的诅咒。这项研究的目的是双重的。首先,我们建议研究理论的进步,数值实现,并测试上述半参数框架内特定学习方案的准确性。其次,我们打算将此方法应用于传统AI领域以外的具体案例,例如:信号处理,通信系统,模式识别和图像分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Pawlak, Miroslaw其他文献
Modelling boredom in the EFL context: An investigation of the role of coping self-efficacy, mindfulness, and foreign language enjoyment
- DOI:10.1177/1362168823118217610.1177/13621688231182176
- 发表时间:2023-06-222023-06-22
- 期刊:
- 影响因子:4.2
- 作者:Fathi, Jalil;Pawlak, Miroslaw;Naderi, MiladFathi, Jalil;Pawlak, Miroslaw;Naderi, Milad
- 通讯作者:Naderi, MiladNaderi, Milad
Potential sources of foreign language learning boredom: A Q methodology study
- DOI:10.14746/ssllt.2022.12.1.310.14746/ssllt.2022.12.1.3
- 发表时间:2022-03-012022-03-01
- 期刊:
- 影响因子:3.4
- 作者:Kruk, Mariusz;Pawlak, Miroslaw;Yazdanmehr, ElhamKruk, Mariusz;Pawlak, Miroslaw;Yazdanmehr, Elham
- 通讯作者:Yazdanmehr, ElhamYazdanmehr, Elham
Investigating the dynamic nature of L2 willingness to communicate
- DOI:10.1016/j.system.2015.02.00110.1016/j.system.2015.02.001
- 发表时间:2015-06-012015-06-01
- 期刊:
- 影响因子:6
- 作者:Pawlak, Miroslaw;Mystkowska-Wiertelak, AnnaPawlak, Miroslaw;Mystkowska-Wiertelak, Anna
- 通讯作者:Mystkowska-Wiertelak, AnnaMystkowska-Wiertelak, Anna
A longitudinal study of foreign language enjoyment and boredom: A latent growth curve modeling
- DOI:10.1177/1362168822108230310.1177/13621688221082303
- 发表时间:2022-03-172022-03-17
- 期刊:
- 影响因子:4.2
- 作者:Kruk, Mariusz;Pawlak, Miroslaw;Yazdanmehr, ElhamKruk, Mariusz;Pawlak, Miroslaw;Yazdanmehr, Elham
- 通讯作者:Yazdanmehr, ElhamYazdanmehr, Elham
Boredom in online classes in the Iranian EFL context: Sources and solutions
- DOI:10.1016/j.system.2021.10255610.1016/j.system.2021.102556
- 发表时间:2021-06-142021-06-14
- 期刊:
- 影响因子:6
- 作者:Derakhshan, Ali;Kruk, Mariusz;Pawlak, MiroslawDerakhshan, Ali;Kruk, Mariusz;Pawlak, Miroslaw
- 通讯作者:Pawlak, MiroslawPawlak, Miroslaw
共 14 条
- 1
- 2
- 3
Pawlak, Miroslaw的其他基金
Machine Learning for Signal Analysis and System Modeling: Sparse and Event Driven Strategies
用于信号分析和系统建模的机器学习:稀疏和事件驱动策略
- 批准号:RGPIN-2017-05939RGPIN-2017-05939
- 财政年份:2021
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Machine Learning for Signal Analysis and System Modeling: Sparse and Event Driven Strategies
用于信号分析和系统建模的机器学习:稀疏和事件驱动策略
- 批准号:RGPIN-2017-05939RGPIN-2017-05939
- 财政年份:2020
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Machine Learning for Signal Analysis and System Modeling: Sparse and Event Driven Strategies
用于信号分析和系统建模的机器学习:稀疏和事件驱动策略
- 批准号:RGPIN-2017-05939RGPIN-2017-05939
- 财政年份:2019
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Statistical Pattern Recognition for Manufacturing Quality Control
制造质量控制的统计模式识别
- 批准号:533141-2018533141-2018
- 财政年份:2018
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Engage Grants ProgramEngage Grants Program
Machine Learning for Signal Analysis and System Modeling: Sparse and Event Driven Strategies
用于信号分析和系统建模的机器学习:稀疏和事件驱动策略
- 批准号:RGPIN-2017-05939RGPIN-2017-05939
- 财政年份:2018
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Machine Learning for Signal Analysis and System Modeling: Sparse and Event Driven Strategies
用于信号分析和系统建模的机器学习:稀疏和事件驱动策略
- 批准号:RGPIN-2017-05939RGPIN-2017-05939
- 财政年份:2017
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Semiparametric learning in signal processing, communication systems and pattern recognition
信号处理、通信系统和模式识别中的半参数学习
- 批准号:8131-20078131-2007
- 财政年份:2010
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Semiparametric learning in signal processing, communication systems and pattern recognition
信号处理、通信系统和模式识别中的半参数学习
- 批准号:8131-20078131-2007
- 财政年份:2008
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Semiparametric learning in signal processing, communication systems and pattern recognition
信号处理、通信系统和模式识别中的半参数学习
- 批准号:8131-20078131-2007
- 财政年份:2007
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Nonlinear and local learning techniques in signal analysis, communication and pattern recognition
信号分析、通信和模式识别中的非线性和局部学习技术
- 批准号:8131-20028131-2002
- 财政年份:2006
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
相似国自然基金
特殊噪声标签下基于EEG信号的个人情绪识别任务中的鲁棒学习算法
- 批准号:12301677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于深度学习的随钻声波信号智能处理方法研究
- 批准号:42304127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂对抗场景下的信号调制识别深度学习方法研究
- 批准号:62301492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合因果学习的鲁棒可解释视觉信号质量评价研究
- 批准号:62371434
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚焦交通信号控制决策智能落地难点的深度强化学习关键技术研究
- 批准号:62376048
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The science for the last mile: Enhanced epidemiologic surveillance to accelerate HIV elimination
最后一英里的科学:加强流行病学监测以加速消除艾滋病毒
- 批准号:1057877410578774
- 财政年份:2020
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:
The science for the last mile: Enhanced epidemiologic surveillance to accelerate HIV elimination
最后一英里的科学:加强流行病学监测以加速消除艾滋病毒
- 批准号:1034816210348162
- 财政年份:2020
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:
The science for the last mile: Enhanced epidemiologic surveillance to accelerate HIV elimination
最后一英里的科学:加强流行病学监测以加速消除艾滋病毒
- 批准号:99265049926504
- 财政年份:2020
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:
Large-Scale Semiparametric Graphical Models with Applications to Neuroscience
大规模半参数图形模型及其在神经科学中的应用
- 批准号:87952258795225
- 财政年份:2014
- 资助金额:$ 2.7万$ 2.7万
- 项目类别:
Large-Scale Semiparametric Graphical Models with Applications to Neuroscience
大规模半参数图形模型及其在神经科学中的应用
- 批准号:86113978611397
- 财政年份:2014
- 资助金额:$ 2.7万$ 2.7万
- 项目类别: