Regulation of Fatty Acid Oxidation during ER stress: mechanisms and consequences
内质网应激期间脂肪酸氧化的调节:机制和后果
基本信息
- 批准号:9131769
- 负责人:
- 金额:$ 30.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAmericanBindingCCAAT-Enhancer-Binding Protein-alphaCCAAT-Enhancer-Binding ProteinsCatabolismChronicClientDataDiabetes MellitusDiseaseEndoplasmic ReticulumEnvironmentFamilyFastingGene ExpressionGenerationsGenesGenetic TranscriptionGlutathioneGoalsGrantHealthHepatocyteHomeostasisIn VitroLeadLinkLipidsLiverMetabolicMetabolic DiseasesMetabolic PathwayMetabolic syndromeMetabolismMolecular ChaperonesNADPNutritionalObesityOrganellesOxidation-ReductionPPAR alphaPathway interactionsPhenocopyPhysiologicalPhysiological ProcessesProcessProductionProtein ImportProteinsRegulationRegulator GenesRepressionRoleSignal TransductionStressSymptomsTestingTissuesUp-RegulationWorkdisulfide bondendoplasmic reticulum stressfatty acid oxidationfeedinghuman diseaseimprovedin vivolipid metabolismnoveloxidationpromoterprotein foldingprotein misfoldingresearch studyresponsesensortranscription factortranscription factor CHOP
项目摘要
DESCRIPTION (provided by applicant): The unfolded protein response (UPR) is activated by protein misfolding stress in the endoplasmic reticulum (ER), and it culminates in the transcriptional upregulation of ER chaperones, degradation factors, and other genes that help the organelle properly fold or degrade client proteins. However, nutritional flux can elicit ER stress in metabolic tissues such as the liver, and the UPR can in turn regulate metabolic pathways. A number of diseases are associated with both altered metabolism and chronic ER stress, most notably including obesity and its complications. Therefore, it is important to understand how the UPR regulates metabolism and how metabolic flux influences the ER protein processing capacity. Data presented in this proposal show that ER stress in the liver leads to transcriptional suppression of fatty acid oxidation, and that inhibition of fatty acid oxidation alters the oxidizing environment of the ER and protects hepatocytes from stress. These findings suggest that the regulation of fatty acid oxidation by the UPR represents a novel pathway by which the response protects ER function during stress. Yet very little is known about the mechanisms by which the UPR represses rather than activates transcription. Nor is it known how flux through metabolic pathways influences the ER protein folding and processing capacity. Thus, the objective of this work is to understand how ER stress regulates fatty acid oxidation, how fatty acid oxidation regulates ER function, and how these pathways interact during feeding and fasting. The work in this proposal tests the central hypothesis that ER stress leads to direct transcriptional suppression of fatty acid oxidation through the UPR-regulated transcription factor CHOP, and that this in turn alters the oxidative protein folding capacity of the ER to alleviate stress. This hypothesis will be tested by three complementary aims. The first aim will elucidate the gene regulatory network by which the UPR regulates fatty acid oxidation. The role of CHOP in this network will be tested, as will the interactions of CHOP with other C/EBP-family transcription factors and the impact of CHOP action on the master regulators of fatty acid oxidation. In the second aim, the ability of the ER to efficiently import, fold, modify, oxidize, transport, and degrade client proteins will be systematically examined when fatty acid oxidation is manipulated, and the roles of NADPH and glutathione redox in linking fatty acid oxidation to ER function will be tested. The third aim will determine how the relationship between fatty acid oxidation and ER protein processing contributes to the regulation of metabolic activity and ER stress during feeding and fasting. The contribution of CHOP to the suppression of fatty acid oxidation during feeding and its enhancement during fasting will be tested, as will the effects of manipulating fatty acid oxidation, NADPH generation, and glutathione oxidation on ER function. Together, these aims will form a cross-disciplinary approach linking ER protein folding, UPR signaling, lipid metabolism, and redox homeostasis.
描述(由申请人提供):未折叠蛋白反应 (UPR) 是由内质网 (ER) 中的蛋白错误折叠应激激活的,最终导致 ER 伴侣、降解因子和其他有助于细胞器正常运转的基因的转录上调然而,营养通量会在肝脏等代谢组织中引起内质网应激,而 UPR 反过来又可以调节代谢途径,许多疾病都与这两种改变有关。代谢和慢性 ER 应激,尤其是肥胖及其并发症,因此,了解 UPR 如何调节代谢以及代谢通量如何影响 ER 蛋白处理能力非常重要。脂肪酸氧化的转录抑制,并且脂肪酸氧化的抑制改变了内质网的氧化环境并保护肝细胞免受应激。这些发现表明,UPR 对脂肪酸氧化的调节代表了一种新的机制。然而,对于 UPR 抑制而不是激活转录的机制知之甚少,也不知道通过代谢途径的通量如何影响 ER 蛋白质折叠和加工能力。这项工作的目的是了解内质网应激如何调节脂肪酸氧化,脂肪酸氧化如何调节内质网功能,以及这些途径在进食和禁食期间如何相互作用。本提案的工作测试了内质网应激导致直接应激的中心假设。通过 UPR 调节的转录因子 CHOP 抑制脂肪酸氧化,这反过来又改变 ER 的氧化蛋白折叠能力以缓解压力。该假设将通过三个互补的目标进行检验。第一个目标是阐明该基因。 UPR 调节脂肪酸氧化的调节网络将被测试,CHOP 与其他 C/EBP 家族转录因子的相互作用以及 CHOP 作用对脂肪酸氧化的影响也将被测试。第二个目标是,在操纵脂肪酸氧化时,系统地检查 ER 有效导入、折叠、修饰、氧化、运输和降解客户蛋白的能力,以及 NADPH 的作用。将测试脂肪酸氧化和内质网功能之间的谷胱甘肽氧化还原作用,以确定脂肪酸氧化和内质网蛋白质加工之间的关系如何有助于代谢活动的调节。将测试进食和禁食期间 CHOP 对抑制脂肪酸氧化的贡献及其在禁食期间增强的作用,以及控制脂肪酸氧化、NADPH 生成和谷胱甘肽氧化对 ER 功能的影响。 ,这些目标将形成一种跨学科的方法,将 ER 蛋白折叠、UPR 信号传导、脂质代谢和氧化还原稳态联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Thomas Rutkowski其他文献
David Thomas Rutkowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Thomas Rutkowski', 18)}}的其他基金
FASEB's The Endoplasmic Reticulum (ER) Conference: Structure, Function, and Disease
FASEB 内质网 (ER) 会议:结构、功能和疾病
- 批准号:
10224392 - 财政年份:2021
- 资助金额:
$ 30.12万 - 项目类别:
Regulation of ER homeostasis by TCA cycle activity: mechanisms and consequences
TCA 循环活动调节 ER 稳态:机制和后果
- 批准号:
10650373 - 财政年份:2015
- 资助金额:
$ 30.12万 - 项目类别:
Regulation of ER homeostasis by TCA cycle activity: mechanisms and consequences
TCA 循环活动调节 ER 稳态:机制和后果
- 批准号:
10809177 - 财政年份:2015
- 资助金额:
$ 30.12万 - 项目类别:
Regulation of ER homeostasis by TCA cycle activity: mechanisms and consequences
TCA 循环活动调节 ER 稳态:机制和后果
- 批准号:
10246851 - 财政年份:2015
- 资助金额:
$ 30.12万 - 项目类别:
Regulation of ER homeostasis by TCA cycle activity: mechanisms and consequences
TCA 循环活动调节 ER 稳态:机制和后果
- 批准号:
10442767 - 财政年份:2015
- 资助金额:
$ 30.12万 - 项目类别:
Regulation of ER homeostasis by TCA cycle activity: mechanisms and consequences
TCA 循环活动调节 ER 稳态:机制和后果
- 批准号:
10799333 - 财政年份:2015
- 资助金额:
$ 30.12万 - 项目类别:
Regulation of Fatty Acid Oxidation during ER stress: mechanisms and consequences
内质网应激期间脂肪酸氧化的调节:机制和后果
- 批准号:
9282785 - 财政年份:2015
- 资助金额:
$ 30.12万 - 项目类别:
相似海外基金
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Novel unconventional myosins in B cell homeostasis
B 细胞稳态中的新型非常规肌球蛋白
- 批准号:
10733725 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Structure-Function and Signaling of Glutamate Delta 1 in Pain Mechanism
疼痛机制中谷氨酸 Delta 1 的结构功能和信号传导
- 批准号:
10688445 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别: