Oxarane-Acrylate System to Double the Clinical Service Life of Restorative Resins
氧杂环丙烷-丙烯酸酯系统可将修复树脂的临床使用寿命延长一倍
基本信息
- 批准号:9130154
- 负责人:
- 金额:$ 35.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcrylatesAddressAnimalsAnti-Bacterial AgentsAwardBacteriaBiochemicalBiocompatible MaterialsBiomedical EngineeringBisphenol A-Glycidyl MethacrylateCalciumCharacteristicsChemical EngineeringClinicalClinical ResearchClinical ServicesColorComposite Dental ResinDelayed HypersensitivityDentalDental EnamelDental PulpDental cariesDentinDentistryDoctor of PhilosophyEnvironmentEstersEthylene OxideEventExposure toFatigueFillerFluorineGoalsHealthHydrolysisHydrophobicityHydroquinonesHypersensitivityIn SituIn VitroIncidenceIonsLifeLongevityMasticationMechanicsMethacrylatesMicrobial BiofilmsMineralsModelingNatureOne-Step dentin bonding systemOralOral cavityOral healthOral mucous membrane structureOxygenPerformancePlant ResinsPolymer ChemistryPolymersPredispositionPropertyRecurrenceRelaxationResidual stateResistanceScientistSideSilverSolidStressStructureSurfaceSystemTestingUrethaneViscosityWaterWorkanalogantimicrobialbacterial resistancebasebiomaterial compatibilitybisphenol Acostcrosslinkdental resindesigndioxiraneesterasein vivoinnovationinorganic phosphateirritationmaterials sciencemeetingsmonomermultidisciplinarynanoparticlenovelphysical propertypolymerizationresponserestorationrestorative dentistryrestorative resinstriethylene glycol dimethacrylateuptake
项目摘要
DESCRIPTION (provided by applicant): In order to develop a novel restorative system with at least twice the lifetime of Bis-GMA/TEGDMA- based composites, their incomplete cure and susceptibility to hydrolysis and esterase degradation must be overcome. To address these problems, we will develop a novel superhydrophobic, degradation-resistant, dental restorative based on an Oxirane/Acrylate interpenetrating network System (OASys, pronounced Oasis). These novel monomers based on fluoridated urethanes with either dioxirane or diacrylate functionality can be highly converted to form a hydrophobic, degradation-resistant, tough and resilient interpenetrating polymer network (IPN) that is inherently highly crosslinked. By their nature, these characteristics impart low residual stresses, high resistance to hydrolytic and enzymatic degradation, and biocompatibility. We will also develop a novel one-step (primer-less), "smart," antimicrobial bonding resin with in situ-generated, colorless and color stable, silver nanoparticles (AgNPs). The bonding resin will contain a phosphate group plus both oxirane and acrylate functionalities. The oxirane and acrylate functionalities bond to the corresponding functionalities in the IPN resin matrix for potentially a much stronger bond than the conventional methacrylate system. The phosphate group will allow the bonding resin to wet etched mineral surfaces as well as bond directly to calcium in Ca-phosphate mineral structures. In the event of marginal gap formation, the "smart" in situ-generated AgNPs will release Ag+ ions and create an antibacterial environment, thereby further reducing the incidence of recurrent caries. Five specific aims are proposed: 1. To determine the effect of using oxiranes, increased hydrophobicity, and IPNs on resin mechanical properties, physical properties and in vitro biocompatibility. The more promising compositions will be combined with reinforcing filler and used for Aim 2. 2. To determine the effect of using a 4- Phospho-NPG GA oxirane (4POA)-based bonding system and in situ-generated silver nanoparticles (AgNP) on bonding resin mechanical properties, physical properties, and in vitro biocompatibility and antibacterial activit, as well as on bond strength to oxirane/acrylate interpenetrating network composites. The two best- performing composites will be chosen for subsequent aims. 3. To determine the effect of using oxiranes, increased hydrophobicity, and IPNs on resin resistance to the oral biochemical environment. The two best- performing groups chosen in Aim 2 will be fatigue- and wear-tested after exposure to acidic, basic and esterase-containing environments for 90 days. 4. To determine the effect of using oxiranes, increased hydrophobicity, and IPNs on resin resistance to bacterial degradation. The two best-performing groups from Aim 2 will be tested in an artificial
mouth bacterial biofilm model. 5. To determine the in vivo biocompatibility of the OASys. The best performing OASys will be tested in three in vivo biocompatibility models: delayed-type hypersensitivity, oral mucosa irritation, and pulp and dentin response tests.
描述(由申请人提供):为了开发一种新型修复系统,其使用寿命至少是基于 Bis-GMA/TEGDMA 的复合材料的两倍,必须克服它们的不完全固化以及对水解和酯酶降解的敏感性。为了解决这些问题,我们将开发一种基于环氧乙烷/丙烯酸酯互穿网络系统(OASys,发音为 Oasis)的新型超疏水、抗降解牙科修复剂。这些基于具有双环氧乙烷或二丙烯酸酯官能团的氟化聚氨酯的新型单体可以高度转化,形成疏水性、耐降解、坚韧且有弹性的互穿聚合物网络(IPN),该网络本质上是高度交联的。就其本质而言,这些特性赋予了低残余应力、高抗水解和酶降解性以及生物相容性。我们还将开发一种新颖的一步式(无底漆)“智能”抗菌粘合树脂,其具有原位生成的无色且颜色稳定的银纳米颗粒(AgNP)。粘合树脂将含有磷酸基团以及环氧乙烷和丙烯酸酯官能团。环氧乙烷和丙烯酸酯官能团与 IPN 树脂基质中的相应官能团结合,可能比传统的甲基丙烯酸酯体系具有更强的结合力。磷酸基团将使粘合树脂能够湿法蚀刻的矿物表面以及直接与磷酸钙矿物结构中的钙粘合。一旦形成边缘间隙,“智能”的原位生成的AgNPs将释放Ag+离子并创造抗菌环境,从而进一步降低复发龋齿的发生率。提出了五个具体目标: 1. 确定使用环氧乙烷、增加疏水性和互穿网络对树脂机械性能、物理性能和体外生物相容性的影响。更有前景的组合物将与增强填料结合并用于目标 2。 2. 确定使用基于 4-Phospho-NPG GA 环氧乙烷 (4POA) 的粘合系统和原位生成的银纳米颗粒 (AgNP) 对粘合树脂的机械性能、物理性能、体外生物相容性和抗菌活性,以及与环氧乙烷/丙烯酸酯互穿网络复合材料的粘合强度。将选择两种性能最佳的复合材料用于后续目标。 3. 确定使用环氧乙烷、增加疏水性和互穿网络 (IPN) 对树脂对口腔生化环境的耐受性的影响。目标 2 中选择的两个表现最好的组将在暴露于酸性、碱性和含酯酶的环境 90 天后进行疲劳和磨损测试。 4. 确定使用环氧乙烷、增加疏水性和互穿网络 (IPN) 对树脂抵抗细菌降解的影响。 Aim 2 中表现最好的两个小组将在人工环境中接受测试
口腔细菌生物膜模型。 5. 确定OASys的体内生物相容性。性能最佳的 OASys 将在三种体内生物相容性模型中进行测试:迟发型超敏反应、口腔粘膜刺激以及牙髓和牙本质反应测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
H. RALPH RAWLS其他文献
H. RALPH RAWLS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('H. RALPH RAWLS', 18)}}的其他基金
Oxarane-Acrylate System to Double the Clinical Service Life of Restorative Resins
氧杂环丙烷-丙烯酸酯系统可将修复树脂的临床使用寿命延长一倍
- 批准号:
8610770 - 财政年份:2013
- 资助金额:
$ 35.86万 - 项目类别:
Oxarane-Acrylate System to Double the Clinical Service Life of Restorative Resins
氧杂环丙烷-丙烯酸酯系统可将修复树脂的临床使用寿命延长一倍
- 批准号:
8729445 - 财政年份:2013
- 资助金额:
$ 35.86万 - 项目类别:
Novel Vehicle for Topical Delivery of Corticosteroids
皮质类固醇局部给药的新型载体
- 批准号:
6549778 - 财政年份:2002
- 资助金额:
$ 35.86万 - 项目类别:
相似国自然基金
一步合成丙烯酸酯的双效催化体系研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
香草醛改性聚丙烯酸酯/Ti3C2Tx-Cu2O纳米复合涂层微结构与抗菌性调控
- 批准号:22108166
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于热/光双固化蓖麻油基聚氨酯丙烯酸酯预聚物的薄晶圆切割用UV光致可剥离胶的构建及固化机理
- 批准号:22178085
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
含全氟环丁基芳基醚的耐高温交联聚甲基丙烯酸酯
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于LCST型聚甲基丙烯酸酯/离子液体凝胶的可逆温敏性智能锂离子电池电解质的制备及其性能研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 35.86万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10463117 - 财政年份:2022
- 资助金额:
$ 35.86万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 35.86万 - 项目类别:
Development of Enantioselective Sm-Catalyzed Transformations
对映选择性 Sm 催化转化的发展
- 批准号:
10538344 - 财政年份:2022
- 资助金额:
$ 35.86万 - 项目类别:
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
- 批准号:
10544730 - 财政年份:2021
- 资助金额:
$ 35.86万 - 项目类别: