Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
基本信息
- 批准号:9174605
- 负责人:
- 金额:$ 40.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsArchitectureAreaAssociation LearningBehaviorBenignBiological Neural NetworksBiopsyCaringCell NucleusCessation of lifeCharacteristicsClinicalCommunitiesComputational TechniqueComputer Vision SystemsComputer-Assisted Image AnalysisComputersConsensusDataDatabasesDecision MakingDermatopathologyDetectionDevelopmentDiagnosisDiagnosticDiagnostic ErrorsDiagnostic ImagingElderlyEvaluationEventFundingGlassGoalsGraphHumanImageImage AnalysisIncidenceIndividualInternationalLeadLesionMachine LearningMalignant NeoplasmsMethodsMicroscopicMitoticPathologistPathologyPatientsPatternPerformancePhysiciansPrecancerous melanosisProcessPropertyReference StandardsResearchScanningSkinSlideSpecimenStagingSystemTechniquesTechnologyTissuesTrainingUnited States National Institutes of HealthWorkbasecancer diagnosisdiagnostic accuracydigital imagingimprovedinnovationinterestmaltreatmentmelanocytemelanomanovelskin lesionstemtoolvisual tracking
项目摘要
ABSTRACT
This proposal will help to improve the accuracy of diagnosing melanoma and melanocytic lesions. The incidence of melanoma is rising faster than any other cancer, and ~1 in 50 U.S. adults will be diagnosed with melanoma this year alone. Our research team has noted substantial diagnostic errors in interpreting skin biopsies of melanocytic lesions; pathologists disagree in up to 60% of cases of invasive melanoma, which can lead to substantial patient harm. Our proposal uses computer technology to analyze whole-slide digital images of glass slides in order to improve the diagnosis of melanocytic lesions. Using data from an ongoing NIH study, we will digitize and study a set of 240 skin biopsy cases that includes a full spectrum of benign to invasive melanoma diagnoses. Each biopsy case has a reference consensus diagnosis developed by a panel of three international experts in dermatopathology and new data will be available from 160 practicing U.S. community pathologists, providing a uniquely rich clinical database that is the largest of its kind. This project will include novel computational techniques, including the detection of both cellular-level and architectural entities, and the use of a combination of feature-based and deep neural network classifiers. Our specific aims are: 1. To detect cellular-level entities in digitized whole slide images of melanocytic skin lesions. 2. To detect structural (architectural) entities in digitized whole slide images of melanocytic skin lesions. 3. To develop an automated diagnosis system that can classify digitized slide images into one of five possible diagnostic classes: benign; atypical lesions; melanoma in situ; invasive melanoma stage T1a; and invasive melanoma stage ≥T1b. In our proposed study, we are innovatively using computer image analysis algorithms and machine learning. This technology has the potential to improve the diagnostic accuracy of pathologists by providing an analytical, undeviating review to assist humans in this difficult task.
抽象的
该提案将有助于提高黑色素瘤和黑色素细胞病变的诊断准确性。黑色素瘤的发病率上升速度比任何其他癌症都要快,仅今年就有大约五分之一的美国成年人被诊断出患有黑色素瘤。在解释黑色素细胞病变的皮肤活检时出现错误;病理学家对高达 60% 的侵袭性黑色素瘤病例存在不同意见,这可能会导致患者受到严重伤害。分析载玻片的全载玻片数字图像,以改进黑色素细胞病变的诊断。使用 NIH 正在进行的研究数据,我们将数字化和研究一组 240 个皮肤活检病例,其中包括全谱良性至侵袭性黑色素瘤。每个活检病例都有一个由三名国际皮肤病理学专家组成的小组制定的参考共识诊断,并且来自 160 名执业美国社区病理学家的新数据将提供独特的丰富临床信息。该项目将包括新颖的计算技术,包括细胞级和架构实体的检测,以及基于特征和深度神经网络分类器的组合的使用。 1. 检测黑素细胞皮肤病变的数字化全切片图像中的细胞级实体 2. 检测黑素细胞皮肤病变的数字化全切片图像中的结构(架构)实体 3. 开发可以分类的自动诊断系统。将幻灯片图像分为五种可能的诊断类别之一:良性;原位黑色素瘤;侵入性黑色素瘤阶段 T1a;和侵入性黑色素瘤阶段 ≥T1b。技术有潜力通过提供分析性、无偏差的审查来帮助人类完成这项艰巨的任务,从而提高病理学家的诊断准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOANN G ELMORE其他文献
JOANN G ELMORE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOANN G ELMORE', 18)}}的其他基金
Metacognition and the Diagnostic Process in Pathology
元认知和病理学诊断过程
- 批准号:
10284893 - 财政年份:2021
- 资助金额:
$ 40.81万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
9925189 - 财政年份:2018
- 资助金额:
$ 40.81万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
10165663 - 财政年份:2018
- 资助金额:
$ 40.81万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
10388503 - 财政年份:2018
- 资助金额:
$ 40.81万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
10407524 - 财政年份:2018
- 资助金额:
$ 40.81万 - 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
- 批准号:
9751222 - 财政年份:2017
- 资助金额:
$ 40.81万 - 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
- 批准号:
9976466 - 财政年份:2017
- 资助金额:
$ 40.81万 - 项目类别:
Reducing Errors in the Diagnosis of Melanoma and Melanocytic Lesions
减少黑色素瘤和黑色素细胞病变的诊断错误
- 批准号:
9005424 - 财政年份:2016
- 资助金额:
$ 40.81万 - 项目类别:
Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
- 批准号:
8970690 - 财政年份:2012
- 资助金额:
$ 40.81万 - 项目类别:
Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
- 批准号:
8420220 - 财政年份:2012
- 资助金额:
$ 40.81万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A Machine Learning Algorithm to Assess Functional "Brain Age" from an In-Home EEG Sleepband
一种通过家用脑电图睡眠带评估功能性“大脑年龄”的机器学习算法
- 批准号:
10820286 - 财政年份:2023
- 资助金额:
$ 40.81万 - 项目类别:
CRCNS: Dense longitudinal neuroimaging to evaluate learning in childhood
CRCNS:密集纵向神经影像评估儿童学习情况
- 批准号:
10835136 - 财政年份:2023
- 资助金额:
$ 40.81万 - 项目类别:
Validation of a Virtual Still Face Procedure and Deep Learning Algorithms to Assess Infant Emotion Regulation and Infant-Caregiver Interactions in the Wild
验证虚拟静脸程序和深度学习算法,以评估野外婴儿情绪调节和婴儿与护理人员的互动
- 批准号:
10777825 - 财政年份:2023
- 资助金额:
$ 40.81万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 40.81万 - 项目类别:
Novel Algorithm and Data Strategies to detect and Predict atrial fibrillation for post-stroke patients (NADSP)
用于检测和预测中风后患者心房颤动的新算法和数据策略 (NADSP)
- 批准号:
10561108 - 财政年份:2023
- 资助金额:
$ 40.81万 - 项目类别: